Geology Research Works
Permanent URI for this collectionhttp://hdl.handle.net/1903/1594
Browse
4 results
Search Results
Item Evapotranspiration Data Product from NESDIS GET-D System Upgraded for GOES-16 ABI Observations(MDPI, 2019-11-12) Fang, Li; Zhan, Xiwu; Schull, Mitchell; Kalluri, Satya; Laszlo, Istvan; Yu, Peng; Carter, Corinne; Hain, Christopher; Anderson, MarthaEvapotranspiration (ET) is a major component of the global and regional water cycle. An operational Geostationary Operational Environmental Satellite (GOES) ET and Drought (GET-D) product system has been developed by the National Environmental Satellite, Data and Information Service (NESDIS) in the National Oceanic and Atmospheric Administration (NOAA) for numerical weather prediction model validation, data assimilation, and drought monitoring. GET-D system was generating ET and Evaporative Stress Index (ESI) maps at 8 km spatial resolution using thermal observations of the Imagers on GOES-13 and GOES-15 before the primary operational GOES satellites transitioned to GOES-16 and GOES-17 with the Advanced Baseline Imagers (ABI). In this study, the GET-D product system is upgraded to ingest the thermal observations of ABI with the best spatial resolution of 2 km. The core of the GET-D system is the Atmosphere-Land Exchange Inversion (ALEXI) model, which exploits the mid-morning rise in the land surface temperature to deduce the land surface fluxes including ET. Satellite-based land surface temperature and solar insolation retrievals from ABI and meteorological forcing from NOAA NCEP Climate Forecast System (CFS) are the major inputs to the GET-D system. Ancillary data required in GET-D include land cover map, leaf area index, albedo and cloud mask. This paper presents preliminary results of ET from the upgraded GET-D system after a brief introduction of the ALEXI model and the architecture of GET-D system. Comparisons with in situ ET measurements showed that the accuracy of the GOES-16 ABI based ET is similar to the results from the legacy GET-D ET based on GOES-13/15 Imager data. The agreement with the in situ measurements is satisfactory with a correlation of 0.914 averaged from three Mead sites. Further evaluation of the ABI-based ET product, upgrade efforts of the GET-D system for ESI products, and conclusions for the ABI-based GET-D products are discussed.Item Scale Impact of Soil Moisture Observations to Noah-MP Land Surface Model Simulations(MDPI, 2020-04-06) Yin, Jifu; Zhan, XiwuDue to the limitations of satellite antenna technology, current operational microwave soil moisture (SM) data products are typically at tens of kilometers spatial resolutions. Many approaches have thus been proposed to generate finer resolution SM data using ancillary information, but it is still unknown if assimilation of the finer spatial resolution SM data has beneficial impacts on model skills. In this paper, a synthetic experiment is thus conducted to identify the benefits of SM observations at a finer spatial resolution on the Noah-MP land surface model. Results of this study show that the performance of the Noah-MP model is significantly improved with the benefits of assimilating 1 km SM observations in comparison with the assimilation of SM data at coarser resolutions. Downscaling satellite microwave SM observations from coarse spatial resolution to 1 km resolution is recommended, and the assimilation of 1 km remotely sensed SM retrievals is suggested for NOAA National Weather Service and National Water Center.Item NOAA Satellite Soil Moisture Operational Product System (SMOPS) Version 3.0 Generates Higher Accuracy Blended Satellite Soil Moisture(MDPI, 2020-09-03) Yin, Jifu; Zhan, Xiwu; Liu, JichengSoil moisture plays a vital role for the understanding of hydrological, meteorological, and climatological land surface processes. To meet the need of real time global soil moisture datasets, a Soil Moisture Operational Product System (SMOPS) has been developed at National Oceanic and Atmospheric Administration to produce a one-stop shop for soil moisture observations from all available satellite sensors. What makes the SMOPS unique is its near real time global blended soil moisture product. Since the first version SMOPS publicly released in 2010, the SMOPS has been updated twice based on the users’ feedbacks through improving retrieval algorithms and including observations from new satellite sensors. The version 3.0 SMOPS has been operationally released since 2017. Significant differences in climatological averages lead to remarkable distinctions in data quality between the newest and the older versions of SMOPS blended soil moisture products. This study reveals that the SMOPS version 3.0 has overwhelming advantages of reduced data uncertainties and increased correlations with respect to the quality controlled in situ measurements. The new version SMOPS also presents more robust agreements with the European Space Agency’s Climate Change Initiative (ESA_CCI) soil moisture datasets. With the higher accuracy, the blended data product from the new version SMOPS is expected to benefit the hydrological, meteorological, and climatological researches, as well as numerical weather, climate, and water prediction operations.Item A New Method for Generating the SMOPS Blended Satellite Soil Moisture Data Product without Relying on a Model Climatology(MDPI, 2022-03-31) Yin, Jifu; Zhan, Xiwu; Liu, Jicheng; Ferraro, Ralph R.Soil moisture operational product system (SMOPS) is developed by National Oceanic and Atmospheric Administration (NOAA) to provide the real-time blended soil moisture (SM) for numeric weather prediction and national water model applications. However, all individual satellite SM data ingested into the current operational SMOPS are scaled to global land data assimilation system (GLDAS) 0–10 cm SM climatology before the combination. As a result, the useful information from the original microwave SM retrievals could be lost, and the GLDAS model errors could be brought into the final SMOPS blended product. In this paper, we propose to scale the individual SM retrievals to the soil moisture active passive (SMAP) data through building regression models. The rescaled individual SM data and the SMAP observations then have similar climatology and dynamics, which allows producing the SMOPScdr (distinguishing with the current operational SMOPSopr) data using an equal-weight averaging approach. With respect to the in situ SM measurements, the developed SMOPScdr is more successful tracking the surface SM status than the individual satellite SM products with significantly decreased errors. The proposed method also preserves the climatology of the reference SMAP data for the period when SMAP is not available, allowing us to produce a long-term SMOPScdr data product.