Geology Research Works

Permanent URI for this collectionhttp://hdl.handle.net/1903/1594

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    NOAA Satellite Soil Moisture Operational Product System (SMOPS) Version 3.0 Generates Higher Accuracy Blended Satellite Soil Moisture
    (MDPI, 2020-09-03) Yin, Jifu; Zhan, Xiwu; Liu, Jicheng
    Soil moisture plays a vital role for the understanding of hydrological, meteorological, and climatological land surface processes. To meet the need of real time global soil moisture datasets, a Soil Moisture Operational Product System (SMOPS) has been developed at National Oceanic and Atmospheric Administration to produce a one-stop shop for soil moisture observations from all available satellite sensors. What makes the SMOPS unique is its near real time global blended soil moisture product. Since the first version SMOPS publicly released in 2010, the SMOPS has been updated twice based on the users’ feedbacks through improving retrieval algorithms and including observations from new satellite sensors. The version 3.0 SMOPS has been operationally released since 2017. Significant differences in climatological averages lead to remarkable distinctions in data quality between the newest and the older versions of SMOPS blended soil moisture products. This study reveals that the SMOPS version 3.0 has overwhelming advantages of reduced data uncertainties and increased correlations with respect to the quality controlled in situ measurements. The new version SMOPS also presents more robust agreements with the European Space Agency’s Climate Change Initiative (ESA_CCI) soil moisture datasets. With the higher accuracy, the blended data product from the new version SMOPS is expected to benefit the hydrological, meteorological, and climatological researches, as well as numerical weather, climate, and water prediction operations.
  • Thumbnail Image
    Item
    A New Method for Generating the SMOPS Blended Satellite Soil Moisture Data Product without Relying on a Model Climatology
    (MDPI, 2022-03-31) Yin, Jifu; Zhan, Xiwu; Liu, Jicheng; Ferraro, Ralph R.
    Soil moisture operational product system (SMOPS) is developed by National Oceanic and Atmospheric Administration (NOAA) to provide the real-time blended soil moisture (SM) for numeric weather prediction and national water model applications. However, all individual satellite SM data ingested into the current operational SMOPS are scaled to global land data assimilation system (GLDAS) 0–10 cm SM climatology before the combination. As a result, the useful information from the original microwave SM retrievals could be lost, and the GLDAS model errors could be brought into the final SMOPS blended product. In this paper, we propose to scale the individual SM retrievals to the soil moisture active passive (SMAP) data through building regression models. The rescaled individual SM data and the SMAP observations then have similar climatology and dynamics, which allows producing the SMOPScdr (distinguishing with the current operational SMOPSopr) data using an equal-weight averaging approach. With respect to the in situ SM measurements, the developed SMOPScdr is more successful tracking the surface SM status than the individual satellite SM products with significantly decreased errors. The proposed method also preserves the climatology of the reference SMAP data for the period when SMAP is not available, allowing us to produce a long-term SMOPScdr data product.