Geology Research Works

Permanent URI for this collectionhttp://hdl.handle.net/1903/1594

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Item
    Chemical and genetic characterization of the ungrouped pallasite Lieksa
    (Wiley, 2023-11-03) Chiappe, Emily M.; Ash, Richard D.; Luttinen, Arto; Lukkari, Sari; Kuva, Jukka; Hilton, Connor D.; Walker, Richard J.
    The meteorite Lieksa was found in 2017 in Löpönvaara, Finland, and later donated to the Finnish Museum of Natural History. Here, we report siderophile element concentrations, genetic isotopic data, and a metal–silicate segregation age for the meteorite. The ~280 g Lieksa is ~80% metal and ~20% silicate and oxide inclusions by volume, with the inclusions consisting primarily of Fe-rich olivine. Due to Lieksa's silicate content, coupled with a texture characterized by metal enclosing the silicates, it has been classified as a pallasite. Lieksa's olivine and bulk chemical characteristics are distinct from those of the known pallasite and iron meteorite groups, consistent with its classification as ungrouped. The meteorite exhibits a flat, chondrite-normalized highly siderophile element pattern, consistent with an origin as an early crystallization product from a metallic melt with chondritic relative abundances. Molybdenum, Ru, and 183W isotopic data indicate that Lieksa formed in the non-carbonaceous (NC) domain of the solar nebula. Radiogenic 182W abundances for Lieksa yield a model metal–silicate segregation age of 1.5 ± 0.8 Myr after calcium-aluminum-rich inclusion formation, which is within the range established for other NC-type pallasite and iron meteorite parent bodies.
  • Thumbnail Image
    Item
    Oceanic and continental lithospheric mantle in the 1.95 Ga Jormua Ophiolite Complex, Finland: implications for mantle and crustal evolution
    (Oxford, 2023-10-31) Finlayson, Valerie; Haller, Mitchell; Day, James M.D.; Ginley, Stephen; O'Driskoll, Brian; Kontinen, Asko; Hanski, Eero; Walker, Richard J.
    The ca. 1.95 Ga Jormua Ophiolite Complex (JOC), Finland, is a rare Paleoproterozoic ophiolite that preserves a record of diverse upper mantle materials and melting processes. Meter-scale grid sampling of four JOC outcrops, as well as non-grid samples, permits evaluation of meter- to kilometer-scale mantle heterogeneity within the JOC. Significant heterogeneity is observed between the four grids, and also among a number of the non-grid samples examined. Variations in the concentrations of fluid-mobile elements are particularly large among different samples and locations. New whole-rock major, lithophile trace, and highly siderophile element data (HSE: Os, Ir, Ru, Pt, Pd, Re), including 187Re-187Os isotopic data, for serpentinized harzburgites indicate the presence of two distinct compositional types and probable modes of origin within the JOC. This is consistent with prior findings. Type 1 is similar to modern refractory abyssal-type mantle. Type 2 is more highly refractory than Type 1, and most likely represents samples from sub-continental lithospheric mantle (SCLM). Type 1 mantle is moderately heterogeneous with respect to chemical and Os isotopic compositions at both the meter and kilometer scales. By contrast, Type 2 mantle is considerably more homogeneous than Type 1 grids at the meter scale, but is more heterogeneous at the kilometer scale. The median initial γOs value for Type 1 mantle, calculated for 1.95 Ga, is ~-2.0 (where γOs is the % deviation in 187Os/188Os relative to a chondritic reference calculated for a specified time). This isotopic composition is consistent with a moderate, long-term decrease in Re/Os relative to the estimate for Primitive Mantle, prior to JOC formation. The similarity in this γOs value to the value for the modern abyssal mantle, as well as the initial values for several Phanerozoic ophiolites suggests that the upper mantle achieved a Re/Os ratio similar to the chondritic reference by ~2 Ga, then evolved along a subparallel trajectory to the chondritic reference since then. For this to occur, only limited Re could have been permanently removed from the upper mantle since at least the time the JOC formed. A localized secondary metasomatic event at ~2 Ga, concurrent with the estimated obduction age for the JOC and subsequent Svecofennian Orogeny, affected the HSE systematics of some Type 1 samples. By contrast, late Archean Os TRD model ages for Type 2 rocks indicate a depletion event superimposed upon the long-term Re depletion of the abyssal mantle. This event was established no later than ~2.6 Ga and may have occurred during a period of significant, well-documented crustal production in the Karelia craton at ~2.7 Ga.
  • Thumbnail Image
    Item
    Age, genetics, and crystallization sequence of the group IIIE iron meteorites
    (Elsevier, 2023-06-14) Chiappe, Emily M.; Ash, Richard; Walker, Richard J.
    Chemical and isotopic data were obtained for ten iron meteorites classified as members of the IIIE group. Nine of the IIIE irons exhibit broadly similar bulk siderophile element characteristics. Modeling of highly siderophile element abundances suggests that they can be related to one another through simple crystal-liquid fractionation of a parent melt. Our preferred model suggests initial S, P, and C concentrations of approximately 12 wt%, 0.8 wt %, and 0.08 wt%, respectively. The modeled IIIE parent melt composition is ~4 times more enriched in highly siderophile elements than a non-carbonaceous (NC) chondrite-like parent body, suggesting a core comprising ~22% of the mass of the parent body. Although chemically distinct from the other IIIE irons, formation of the anomalous IIIE iron Aletai can potentially be accounted for under the conditions of this model through the nonequilibrium mixing of an evolved liquid and early formed solid. Cosmic ray exposure-corrected nucleosynthetic Mo, Ru, and W isotopic compositions of four of the bona fide IIIE irons and Aletai indicate that they originated from the non-carbonaceous (NC) isotopic domain. Tungsten-182 isotopic data for the IIIE irons and Aletai yield similar model metal-silicate segregation ages of 1.6 ± 0.8 Myr and 1.2 ± 0.8 Myr, respectively, after calcium aluminum-rich inclusion (CAI) formation. These ages are consistent with those reported for other NC-type iron meteorite parent bodies. The IIIE irons are chemically and isotopically similar to the much larger IIIAB group. Despite some textural, mineralogical, and chemical differences, such as higher C content, the new results suggest they may have originated from a different crystallization sequence on the same or closely-related parent body.
  • Thumbnail Image
    Item
    Meter-Scale Chemical and Isotopic Heterogeneities in the Oceanic Mantle, Leka Ophiolite Complex, Norway
    (Oxford, 2021-07-13) Haller, Mitchell B.; O'Driscoll, Brian; Day, James M.D.; Daley, J. Stephen; Piccoli, Philip M.; Walker, Richard J.; Walker, Richard
    Mantle peridotites from three 3 x 3-meter grids sampled at kilometer distances from one another in the ca. 497 Ma Leka Ophiolite Complex (LOC), Norway, are examined to investigate the chemical and isotopic nature of oceanic mantle domains at the centimeter to kilometer scale. The lithology of each grid locality is predominantly harzburgite, but includes layers and lenses of dunite and pyroxenite. Major and lithophile trace element compositions indicate a history of prior melting at pressures at or slightly below the garnet stability field. The common presence of orthopyroxenite veins likely reflects infiltration of silicic melts associated with supra-subduction zone processes. Osmium isotopes and highly siderophile element (HSE) abundance data for centimeter-scale sampling of traverses from the pyroxenites into the harzburgites reveal that the formation of the veins had little effect on Os isotopic compositions, and Os, Ir, Ru and Re abundances in the harzburgites. Adjacent to one of the orthopyroxenite veins studied, however, Pt and Pd abundances appear to have been strongly modified by interactions with vein-forming melts or fluids at distances of as much as 4– 6 cm from the pyroxenite-harzburgite contact. Leka harzburgites have initial gammaOs values (% deviation from a chondritic reference) that range from -4.7 to +2.2 (6.9% variation), with individual uncertainties of 60.2 units. Averaged initial Os isotopic compositions for harzburgites from the three grid sites separated by as much as 6 km, by contrast, differ by only a maximum of 2.6%. Isotopic heterogeneity on the centimeter to meter scale is, therefore, larger than kilometer-scale heterogeneity, indicating that at least some of the Os isotopic heterogeneity commonly observed globally among mantle peridotites is the result of processes that acted on a local scale. The general uniformity of these isotopic compositions among the three grid sites suggests that the portion of the oceanic mantle sampled by the LOC was homogenous at the kilometer scale with respect to the long-term Re/Os ratio. The long-term projected Re/Os for LOC harzburgites is similar to the average required for modern abyssal peridotites. This observation strengthens previous interpretations, based largely on data for abyssal peridotites, that state the Os isotopic evolution of oceanic mantle is consistent with a long-term 187Re/188Os of ~0.38. The present ~3 to 4% difference between the Os isotopic composition of the modern oceanic mantle and estimates for primitive mantle suggests that at least ~6% of the mass of the oceanic mantle has been removed from it in the form of Re- enriched, mafic oceanic crust. Despite the recycling of this crust back into the mantle, most of it has evidently not been mixed back into accessible portions of the upper oceanic peridotite mantle. Compared to composition estimates for the primitive mantle, the median HSE compositions for the three grid sites are moderately to strongly depleted in Pd and Re, consistent with the corresponding lithophile element evidence for 20–30% melt depletion. As with initial cOs values, most harzburgites from a given grid are characterized by greater variations in absolute and relative HSE abundances than the differences between the median abundances of the three grid sampling locales. This observation indicates that as with Os isotopes, the HSE abundance heterogeneity among the harzburgites most strongly reflects centimeter- to meter-scale melting and remobilization effects. Except for Ru, median HSE abundances for grid harzburgites are similar to median abundances for abyssal peridotites. The 30% lower median Ru/Ir in the LOC compared to the median ratio for abyssal peridotites suggests that the abundance of Ru in the oceanic mantle may be more variable than generally thought.