Geology Research Works
Permanent URI for this collectionhttp://hdl.handle.net/1903/1594
Browse
Item Developing Sensor Proxies for “Chemical Cocktails” of Trace Metals in Urban Streams(MDPI, 2020-10-14) Morel, Carol J.; Kaushal, Sujay S.; Tan, Maggie L.; Belt, Kenneth T.Understanding transport mechanisms and temporal patterns in the context of metal concentrations in urban streams is important for developing best management practices and restoration strategies to improve water quality. In some cases, in-situ sensors can be used to estimate unknown concentrations of trace metals or to interpolate between sampling events. Continuous sensor data from the United States Geological Survey were analyzed to determine statistically significant relationships between lead, copper, zinc, cadmium, and mercury with turbidity, specific conductance, dissolved oxygen, and discharge for the Hickey Run, Watts Branch, and Rock Creek watersheds in the Washington, D.C. region. We observed a significant negative linear relationship between concentrations of Cu and dissolved oxygen at Rock Creek (p < 0.05). Sometimes, turbidity had significant positive linear relationships with Pb and Hg concentrations. There were negative or positive linear relationships between Pb, Cd, Zn, and Hg and specific conductance. There also appeared to be relationships between watershed areal fluxes of Pb, Cu, Zn, and Cd in streams with turbidity. Watershed monitoring approaches using continuous sensor data have the potential to characterize the frequency, magnitude, and composition of pulses in concentrations and loads of trace metals, which could improve the management and restoration of urban streams.Item Urban Evolution: The Role of Water(MDPI, 2015-07-27) Kaushal, Sujay S.; McDowell, William H.; Wollheim, Wilfred M.; Newcomer Johnson, Tamara A.; Mayer, Paul M.; Belt, Kenneth T.; Pennino, Michael J.The structure, function, and services of urban ecosystems evolve over time scales from seconds to centuries as Earth’s population grows, infrastructure ages, and sociopolitical values alter them. In order to systematically study changes over time, the concept of “urban evolution” was proposed. It allows urban planning, management, and restoration to move beyond reactive management to predictive management based on past observations of consistent patterns. Here, we define and review a glossary of core concepts for studying urban evolution, which includes the mechanisms of urban selective pressure and urban adaptation. Urban selective pressure is an environmental or societal driver contributing to urban adaptation. Urban adaptation is the sequential process by which an urban structure, function, or services becomes more fitted to its changing environment or human choices. The role of water is vital to driving urban evolution as demonstrated by historical changes in drainage, sewage flows, hydrologic pulses, and long-term chemistry. In the current paper, we show how hydrologic traits evolve across successive generations of urban ecosystems via shifts in selective pressures and adaptations over time. We explore multiple empirical examples including evolving: (1) urban drainage from stream burial to stormwater management; (2) sewage flows and water quality in response to wastewater treatment; (3) amplification of hydrologic pulses due to the interaction between urbanization and climate variability; and (4) salinization and alkalinization of fresh water due to human inputs and accelerated weathering. Finally, we propose a new conceptual model for the evolution of urban waters from the Industrial Revolution to the present day based on empirical trends and historical information. Ultimately, we propose that water itself is a critical driver of urban evolution that forces urban adaptation, which transforms the structure, function, and services of urban landscapes, waterways, and civilizations over time.