Physics Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/2800

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    RELAXATION TIME FLUCTUATIONS IN TRANSMONS WITH DIFFERENT SUPERCONDUCTING GAPS
    (2023) Li, Kungang; Lobb, Christopher; Chemical Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    In this thesis, I discuss the fabrication and measurement of Al/AlOx/Al transmons that have electrodes with different superconducting gaps. With gap-engineering, the tunneling of single quasiparticle from the low-gap side to the high-gap side can be suppressed, hence increasing the relaxation time T1. The best gap-engineered device showed T1 exceeding 300 μs. Large T1 fluctuations in my devices were also observed. I proposed a mechanism for exploring the T1 fluctuation data and discuss the possible underlying cause of the T1 fluctuations. I first discuss the theory of the loss in gap-engineered transmons, with a focus on the loss from non-equilibrium quasiparticles. The model yields the quasiparticle-induced loss in transmons and its dependence on temperature. I also discuss how multiple Andreev reflection (MAR) effects might alter these conclusions, leading to a further reduction in T1. I then describe the design, fabrication and basic characterization of the transmon chip SKD102, which features two transmons – one with thin-film electrodes of pure Al and another that had one electrode made from oxygen-doped Al. I next examined T1 vs temperature and how the T1 fluctuations depended on temperature. I compare my results to a simple model and find reasonable agreement in transmons on chip SKD102, KL103 and KL109, which had different electrode and layer configurations. Finally, I analyze T1 fluctuations in different devices and as a function of temperature and propose a model to explain this behavior. Over the different devices, the T1 fluctuation magnitude roughly scaled as T13/2. With increasing temperature, T1 decreases due to a higher density of thermally generated quasiparticles. In contrast, for an individual device measured from 20mK to 250 mK, the fluctuation magnitude appears to be proportional to T1. I present a model of quasiparticle dissipation channels that reproduces both of these observed scaling relationships.
  • Item
    Effects of Optical Illumination on Superconducting Quantum Devices
    (2015) Budoyo, Rangga Perdana; Wellstood, Frederick C; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    I report measurements of two different types of superconducting devices illuminated by 780 nm light, one of the wavelengths needed in a proposed atom-superconductor hybrid quantum system. I illuminated a thin-film Al lumped-element resonator and observed the resonator quality factor and resonance frequency as a function of illumination intensity, microwave power, and temperature. The resonator was mounted in a 3d aluminum cavity. The variation in optically-induced loss due to microwave power was similar to the behavior expected for loss from a distribution of two-level systems. Although this behavior may suggest the presence of optically activated two-level systems, I found that the loss is better explained by the presence of nonequilibrium quasiparticles generated by the illumination and excited by the microwave drive. I described a model of the system where optical absorption creates an effective source of phonons and solved the coupled quasiparticle-phonon rate equations. I found good agreement between the simulation and the measured resonator quality factor and frequency shift as a function of temperature, microwave power, and optical illumination. I fabricated a transmon qubit and studied the qubit transition frequency and relaxation time as a function of illumination intensity and temperature. The qubit was mounted in a 3d aluminum cavity and coupled to the cavity forming a Jaynes-Cummings system. Qubit relaxation showed non-exponential behavior that I fit to a quasiparticle fluctuation model with two characteristic times. The transition frequency and both characteristic times decreased with increasing illumination intensity. For comparison, I described a nonequilibrium quasiparticle model for the expected frequency shift and relaxation time due to quasiparticle tunneling through the Josephson junction. While the quasiparticle simulation predicted the general qualitative behavior of the frequency shift and relaxation time, there were some significant discrepancies with the data. This suggests the model needs to be extended, for example by including a different gap in the two superconductor layers forming the junction, and by taking into account other possible sources of loss and decoherence.
  • Item
    Raman coherence effects in a superconducting Jaynes-Cummings system
    (2015) Novikov, Sergey; Wellstood, Frederick C; Palmer, Benjamin S; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    This dissertation describes a study of Raman coherence effects using superconducting quantum circuits. Raman coherence can occur in a three-level system driven by two coherent electromagnetic fields. In a suitable system with a metastable state, the effect is typically manifest as coherent population trapping (CPT) and electromagnetically induced transparency (EIT). I derive the theoretical framework and show experimentally that in the case of a cascade three-level system based on transmon superconducting qubit states, an effect known as the Autler-Townes doublet (ATD), rather than CPT or EIT, occurs. I propose, model, and implement a quasi- system made of combined transmon-cavity levels, which has a meta-stable state required for CPT and EIT. I measure CPT, and demonstrate coherence of the dark state in the time domain. Instead of EIT, I observe a new phenomenon – electromagnetically suppressed transmission (EST). The large negative dispersion accompanying EST leads to superluminal pulse propagation in the system. My results suggest that quantum superconducting circuits provide a viable platform for studying quantum optics of multi-level systems.