Cell Biology & Molecular Genetics Theses and Dissertations
Permanent URI for this collectionhttp://hdl.handle.net/1903/2750
Browse
2 results
Search Results
Item CHARACTERIZATION OF TWO HIGHLY CONSERVED POXVIRUS TRANSMEMBRANE PROTEINS OF UNKNOWN FUNCTION(2009) Sood, Cindy Leigh; Moss, Bernard; Cell Biology & Molecular Genetics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)The vaccinia virus I5L open reading frame encodes a 79-amino-acid protein, with two predicted transmembrane domains, conserved among all sequenced members of the chordopoxvirus subfamily. No nonpoxvirus homologs or functional motifs have been recognized, and the role of the I5 protein remains unknown. I5 synthesis was dependent on viral DNA replication and occurred exclusively at late times, consistent with a consensus late promoter motif adjacent to the start of the open reading frame. I5 was present in preparations of purified virions and could be extracted with nonionic detergent, suggesting membrane insertion. Transmission electron microscopy of immunogold-labeled thawed cryosections of infected cells revealed the association of an epitope-tagged I5 with the membranes of immature and mature virions. Viable I5L deletion and frameshift mutants were constructed and found to replicate like wild-type virus in a variety of cell lines, indicating that the protein was dispensable for in vitro cultivation. However, mouse intranasal challenge experiments indicated that a mutant virus with a frameshift resulting in a stop codon near the N terminus of I5 was attenuated compared to control virus. The attenuation correlated with clearance of mutant viruses from the respiratory tract and with less progression and earlier resolution of pathological changes. We suggest that I5 is involved in an aspect of host defense that is evolutionarily conserved although a role in cell tropism should also be considered. The vaccinia virus A43R open reading frame encodes a 168-amino acid protein with a predicted N-terminal signal sequence and a C-terminal transmembrane domain. Although A43R is conserved in all sequenced members of the orthopoxvirus genus, no non-orthopoxvirus homolog or functional motif was recognized. Biochemical and confocal microscopic studies indicated that A43 is expressed at late times following viral DNA synthesis and is a type-1 membrane protein with two N-linked oligosaccharide chains. Neither mature nor enveloped virions contained appreciable amounts of A43, which was detected in Golgi and plasma membranes. Loss of A43R expression had no discernible effect on plaque size or virus replication in cell culture and little effect on virulence in a mouse intranasal infection model. Although the A43 mutant produced significantly smaller lesions in the skin of mice than the control, the amounts of virus recovered from the lesions were similar.Item Functions of the Tobacco mosaic virus helicase domain: regulating formation of the virus replication complex and altering the activity of a host-encoded transcription factor(2008-04-23) Wang, Xiao; Culver, James N; Cell Biology & Molecular Genetics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Tobacco mosaic virus (TMV)-encoded 126-kDa and 183-kDa replicases are multidomain and multifunctional proteins. The helicase domain shared by both replicases has been shown to perform multiple tasks during the virus life cycle. In vitro structural and functional analyses demonstrated that monomers and dimers of the TMV helicase domain were the active forms for ATP hydrolysis. However, self-interaction of the helicase polypeptides resulted in the formation of higher-order structures that likely serve as structural scaffolds for the assembly of virus replication complexes (VRCs). Mutagenesis studies of the TMV helicase motifs showed that conserved amino acid residues played important roles in protein ATPase and/or RNA binding activities. A close correlation between ATPase activity of the helicase domain and assembly of wild-type VRC-like vesicles by the 126-kDa replicase further suggests that ATPase activity of the TMV helicase domain may modulate proper VRC assembly. In addition to helicase self-interaction, a novel virus-host interaction involving ATAF2, a NAC domain transcription factor was identified. Members within the NAC domain family are involved in plant developmental processes and stress/defense responses. In this study, transgenic plants overexpressing ATAF2 showed a strong developmental phenotype. Inoculation of TMV in these transgenic plants resulted in reduced virus accumulations. Additionally, transcriptional induction of ATAF2 occurred in response to TMV infection and salicylic acid treatment. Combined, these results suggest that ATAF2 is involved in a host defense response. One interesting finding was that in susceptible hosts, virus-directed induction of ATAF2 and PR1, a well-defined pathogenesis-related (PR) marker gene for host defense system, occurred only in locally-infected but not in systemically-infected tissues. Dynamic changes in the expression of host defense genes suggest that viruses have evolved certain mechanisms to actively modulate host gene expression. Interaction between the TMV helicase domain and ATAF2 may provide one way to suppress the ATAF2-mediated host defense signaling pathway. Combined these studies investigated the importance of the TMV helicase domain in VRC formation and in manipulating the host defense system. The results confirmed the functional versatility of the TMV helicase domain in establishing a successful virus life cycle.