Computer Science Research Works

Permanent URI for this collectionhttp://hdl.handle.net/1903/1593

Browse

Search Results

Now showing 1 - 9 of 9
  • Item
    Full-length messenger RNA sequences greatly improve genome annotation
    (Genome Biology, 2002-05-30) Haas, Brian J; Volfovsky, Natalia; Town, Christopher D; Troukhan, Maxim; Alexandrov, Nickolai; Feldman, Kenneth A; Flavell, Richard B; White, Owen; Salzberg, Steven L.
    Background: Annotation of eukaryotic genomes is a complex endeavor that requires the integration of evidence from multiple, often contradictory, sources. With the ever-increasing amount of genome sequence data now available, methods for accurate identification of large numbers of genes have become urgently needed. In an effort to create a set of very high-quality gene models, we used the sequence of 5,000 full-length gene transcripts from Arabidopsis to re-annotate its genome. We have mapped these transcripts to their exact chromosomal locations and, using alignment programs, have created gene models that provide a reference set for this organism. Results: Approximately 35% of the transcripts indicated that previously annotated genes needed modification, and 5% of the transcripts represented newly discovered genes. We also discovered that multiple transcription initiation sites appear to be much more common than previously known, and we report numerous cases of alternative mRNA splicing. We include a comparison of different alignment software and an analysis of how the transcript data improved the previously published annotation. Conclusions: Our results demonstrate that sequencing of large numbers of full-length transcripts followed by computational mapping greatly improves identification of the complete exon structures of eukaryotic genes. In addition, we are able to find numerous introns in the untranslated regions of the genes.
  • Item
    Evidence for symmetric chromosomal inversions around the replication origin in bacteria
    (Genome Biology, 2000-12-04) Eisen, Jonathan A.; Heidelberg, John F.; White, Owen; Salzberg, Steven L.
    Background: Whole-genome comparisons can provide great insight into many aspects of biology. Until recently, however, comparisons were mainly possible only between distantly related species. Complete genome sequences are now becoming available from multiple sets of closely related strains or species. Results: By comparing the recently completed genome sequences of Vibrio cholerae, Streptococcus pneumoniae and Mycobacterium tuberculosis to those of closely related species - Escherichia coli, Streptococcus pyogenes and Mycobacterium leprae, respectively - we have identified an unusual and previously unobserved feature of bacterial genome structure. Scatterplots of the conserved sequences (both DNA and protein) between each pair of species produce a distinct X-shaped pattern, which we call an X-alignment. The key feature of these alignments is that they have symmetry around the replication origin and terminus; that is, the distance of a particular conserved feature (DNA or protein) from the replication origin (or terminus) is conserved between closely related pairs of species. Statistically significant X-alignments are also found within some genomes, indicating that there is symmetry about the replication origin for paralogous features as well. Conclusions: The most likely mechanism of generation of X-alignments involves large chromosomal inversions that reverse the genomic sequence symmetrically around the origin of replication. The finding of these X-alignments between many pairs of species suggests that chromosomal inversions around the origin are a common feature of bacterial genome evolution.
  • Item
    Method for Identifying Splice Sites and Translational Start Sites in Eukaryotic mRNA
    (Computer Applications in the Biosciences (CABIOS), 1997) Salzberg, Steven L.
    This paper describes a new method for determining the consensus sequences that signal the start of donor translation and the boundaries between exons and introns (donor and acceptor sites) in eukaryotic mRNA. The method takes into account the dependencies between adjacent bases, in contrast to the usual technique of considering each position independently. When coupled with a dynamic program to compute the most likely sequence, new consensus sequences emerge. The consensus sequence information is summarized in conditional probability matrices which, when used to locate signals in uncharacterized genomic DNA, have greater sensitivity and specificity than conventional matrices. Species-specific versions of these matrices are especially effective at distinguishing true and false sites.
  • Item
    Finding Genes in DNA with a Hidden Markov Model
    (Journal of Computational Biology, 1997) Henderson, John; Salzberg, Steven; Fasman, Kenneth H
    This study describes a new Hidden Markov Model (HMM) system for segmenting uncharacterized genomic DNA sequences into exons, introns, and intergenic regions. Separate HMM modules were designed and trained for specific regions of DNA: exons, introns, intergenic regions, and splice sites. The models were then tied together to form a biologically feasible topology. The integrated HMM was trained further on a set of eukaryotic DNA sequences, and tested by using it to segment a separate set of sequences. The resulting HMM system, which is called VEIL (Viterbi Exon-Intron Locator), obtains an overall accuracy on test data of 92% of total bases correctly labelled, with a correlation coefficient of 0.73. Using the more stringent test of exact exon prediction, VEIL correctly located both ends of 53% of the coding exons, and 49% of the exons it predicts are exactly correct. These results compare favorably to the best previous results for gene structure prediction, and demonstrate the benefits of using HMMs for this problem.
  • Item
    JIGSAW, GeneZilla, and GlimmerHMM: puzzling out the features of human genes in the ENCODE regions
    (Genome Biology, 2006-08-07) Allen, Jonathan E.; Majoros, William H.; Pertea, Mihaela; Salzberg, Steven L.
    Background: Predicting complete protein-coding genes in human DNA remains a significant challenge. Though a number of promising approaches have been investigated, an ideal suite of tools has yet to emerge that can provide near perfect levels of sensitivity and specificity at the level of whole genes. As an incremental step in this direction, it is hoped that controlled gene finding experiments in the ENCODE regions will provide a more accurate view of the relative benefits of different strategies for modeling and predicting gene structures. Results: Here we describe our general-purpose eukaryotic gene finding pipeline and its major components, as well as the methodological adaptations that we found necessary in accommodating human DNA in our pipeline, noting that a similar level of effort may be necessary by ourselves and others with similar pipelines whenever a new class of genomes is presented to the community for analysis. We also describe a number of controlled experiments involving the differential inclusion of various types of evidence and feature states into our models and the resulting impact these variations have had on predictive accuracy. Conclusions: While in the case of the non-comparative gene finders we found that adding model states to represent specific biological features did little to enhance predictive accuracy, for our evidence-based ‘combiner’ program the incorporation of additional evidence tracks tended to produce significant gains in accuracy for most evidence types, suggesting that improved modeling efforts at the hidden Markov model level are of relatively little value. We relate these findings to our current plans for future research.
  • Item
    Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake
    (Genome Biology, 2007-02-21) Kingsford, Carleton L.; Ayanbule, Kunmi; Salzberg, Steven L.
    Background: In many prokaryotes, transcription of DNA to RNA is terminated by a thymine-rich stretch of DNA following a hairpin loop. Detecting such Rho-independent transcription terminators can shed light on the organization of bacterial genomes and can improve genome annotation. Previous computational methods to predict Rho-independent terminators have been slow or limited in the organisms they consider. Results: We describe TransTermHP, a new computational method to rapidly and accurately detect Rho-independent transcription terminators. We predict the locations of terminators in 343 prokaryotic genomes, representing the largest collection of predictions available. In Bacillus subtilis, we can detect 93% of known terminators with a false positive rate of just 6%, comparable to the best-known methods. Outside the Firmicutes division, we find that Rho-independent termination plays a large role in the Neisseria and Vibrio genera, the Pasteurellaceae (including the Haemophilus genus) and several other species. In Neisseria and Pasteurellaceae, terminator hairpins are frequently formed by closely spaced, complementary instances of exogenous DNA uptake signal sequences. We quantify the propensity for terminators to include these sequences. In the process, we provide the first discussion of potential uptake signals in Haemophilus ducreyi and Mannheimia succiniciproducens, and we discuss the preference for a particular configuration of uptake signal sequences within terminators. Conclusion: Our new fast and accurate method for detecting transcription terminators has allowed us to identify and analyze terminators in many new genomes and to identify DNA uptake signal sequences in several species where they have not been previously reported. Our software and predictions are freely available.
  • Item
    The Genome Assembly Archive: A New Public Resource
    (PLoS Biology, 2004-09) Salzberg, Steven L.; Church, Deanna; DiCuccio, Michael; Yaschenko, Eugene; Ostell, James
  • Item
    Serendipitous discovery of Wolbachia genomes in multiple Drosophila species
    (Genome Biology, 2005) Salzberg, Steven L.; Dunning Hotopp, Julie C.; Delcher, Arthur L.; Pop, Mihai; Smith, Douglas R; Eisen, Michael B.; Nelson, William C.
    Background: The Trace Archive is a repository for the raw, unanalyzed data generated by largescale genome sequencing projects. The existence of this data offers scientists the possibility of discovering additional genomic sequences beyond those originally sequenced. In particular, if the source DNA for a sequencing project came from a species that was colonized by another organism, then the project may yield substantial amounts of genomic DNA, including near-complete genomes, from the symbiotic or parasitic organism. Results: By searching the publicly available repository of DNA sequencing trace data, we discovered three new species of the bacterial endosymbiont Wolbachia pipientis in three different species of fruit fly: Drosophila ananassae, D. simulans, and D. mojavensis. We extracted all sequences with partial matches to a previously sequenced Wolbachia strain and assembled those sequences using customized software. For one of the three new species, the data recovered were sufficient to produce an assembly that covers more than 95% of the genome; for a second species the data produce the equivalent of a 'light shotgun' sampling of the genome, covering an estimated 75-80% of the genome; and for the third species the data cover approximately 6-7% of the genome. Conclusions: The results of this study reveal an unexpected benefit of depositing raw data in a central genome sequence repository: new species can be discovered within this data. The differences between these three new Wolbachia genomes and the previously sequenced strain revealed numerous rearrangements and insertions within each lineage and hundreds of novel genes. The three new genomes, with annotation, have been deposited in GenBank.
  • Item
    Macronuclear Genome Sequence of the Ciliate Tetrahymena thermophila, a Model Eukaryote
    (PLoS Biology, 2006) Eisen, Jonathan A.; Coyne, Robert S.; Wu, Martin; Wu, Dongying; Thiagarajan, Mathangi; Wortman, Jennifer R.; Badger, Jonathan H.; Ren, Qinghu; Amedeo, Paolo; Jones, Kristie M.; Tallon, Luke J.; Delcher, Arthur L.; Salzberg, Steven L.; Silva, Joana C.; Haas, Brian J.; Majoros, William H.; Farzad, Maryam; Carlton, Jane M.; Smith, Robert K. Jr.; Garg, Jyoti; Pearlman, Ronald E.; Karrer, Kathleen M.; Sun, Lei; Manning, Gerard; Elde, Nels C.; Turkewitz, Aaron P.; Asai, David J.; Wilkes, David E.; Wang, Yufeng; Cai, Hong; Collins, Kathleen; Stewart, B. Andrew; Lee, Suzanne R.; Wilamowsk, Katarzyna; Weinberg, Zasha; Ruzzo, Walter L.; Wloga, Dorota; Gaertig, Jacek; Frankel, Joseph; Tsao, Che-Chia; Gorovsky, Martin A.; Keeling, Patrick J.; Waller, Ross F.; Patron, Nicola J.; Cherry, J. Michael; Stover, Nicholas A.; Krieger, Cynthia J.; del Toro, Christina; Ryder, Hilary F.; Williamson, Sondra C.; Barbeau, Rebecca A.; Hamilton, Eileen P.; Orias, Eduardo
    The ciliate Tetrahymena thermophila is a model organism for molecular and cellular biology. Like other ciliates, this species has separate germline and soma functions that are embodied by distinct nuclei within a single cell. The germline-like micronucleus (MIC) has its genome held in reserve for sexual reproduction. The soma-like macronucleus (MAC), which possesses a genome processed from that of the MIC, is the center of gene expression and does not directly contribute DNA to sexual progeny. We report here the shotgun sequencing, assembly, and analysis of the MAC genome of T. thermophila, which is approximately 104 Mb in length and composed of approximately 225 chromosomes. Overall, the gene set is robust, with more than 27,000 predicted protein-coding genes, 15,000 of which have strong matches to genes in other organisms. The functional diversity encoded by these genes is substantial and reflects the complexity of processes required for a free-living, predatory, single-celled organism. This is highlighted by the abundance of lineage-specific duplications of genes with predicted roles in sensing and responding to environmental conditions (e.g., kinases), using diverse resources (e.g., proteases and transporters), and generating structural complexity (e.g., kinesins and dyneins). In contrast to the other lineages of alveolates (apicomplexans and dinoflagellates), no compelling evidence could be found for plastid-derived genes in the genome. UGA, the only T. thermophila stop codon, is used in some genes to encode selenocysteine, thus making this organism the first known with the potential to translate all 64 codons in nuclear genes into amino acids. We present genomic evidence supporting the hypothesis that the excision of DNA from the MIC to generate the MAC specifically targets foreign DNA as a form of genome self-defense. The combination of the genome sequence, the functional diversity encoded therein, and the presence of some pathways missing from other model organisms makes T. thermophila an ideal model for functional genomic studies to address biological, biomedical, and biotechnological questions of fundamental importance.