Computer Science Research Works
Permanent URI for this collectionhttp://hdl.handle.net/1903/1593
Browse
2 results
Search Results
Item Features generated for computational splice-site prediction correspond to functional elements(Springer Nature, 2007-10-24) Dogan, Rezarta Islamaj; Getoor, Lise; Wilbur, W John; Mount, Stephen MAccurate selection of splice sites during the splicing of precursors to messenger RNA requires both relatively well-characterized signals at the splice sites and auxiliary signals in the adjacent exons and introns. We previously described a feature generation algorithm (FGA) that is capable of achieving high classification accuracy on human 3' splice sites. In this paper, we extend the splice-site prediction to 5' splice sites and explore the generated features for biologically meaningful splicing signals. We present examples from the observed features that correspond to known signals, both core signals (including the branch site and pyrimidine tract) and auxiliary signals (including GGG triplets and exon splicing enhancers). We present evidence that features identified by FGA include splicing signals not found by other methods. Our generated features capture known biological signals in the expected sequence interval flanking splice sites. The method can be easily applied to other species and to similar classification problems, such as tissue-specific regulatory elements, polyadenylation sites, promoters, etc.Item Indirect two-sided relative ranking: a robust similarity measure for gene expression data(2010-03-17) Licamele, Louis; Getoor, LiseBackground: There is a large amount of gene expression data that exists in the public domain. This data has been generated under a variety of experimental conditions. Unfortunately, these experimental variations have generally prevented researchers from accurately comparing and combining this wealth of data, which still hides many novel insights. Results: In this paper we present a new method, which we refer to as indirect two-sided relative ranking, for comparing gene expression profiles that is robust to variations in experimental conditions. This method extends the current best approach, which is based on comparing the correlations of the up and down regulated genes, by introducing a comparison based on the correlations in rankings across the entire database. Because our method is robust to experimental variations, it allows a greater variety of gene expression data to be combined, which, as we show, leads to richer scientific discoveries. Conclusions: We demonstrate the benefit of our proposed indirect method on several datasets. We first evaluate the ability of the indirect method to retrieve compounds with similar therapeutic effects across known experimental barriers, namely vehicle and batch effects, on two independent datasets (one private and one public). We show that our indirect method is able to significantly improve upon the previous state-of-the-art method with a substantial improvement in recall at rank 10 of 97.03% and 49.44%, on each dataset, respectively. Next, we demonstrate that our indirect method results in improved accuracy for classification in several additional datasets. These datasets demonstrate the use of our indirect method for classifying cancer subtypes, predicting drug sensitivity/resistance, and classifying (related) cell types. Even in the absence of a known (i.e., labeled) experimental barrier, the improvement of the indirect method in each of these datasets is statistically significant.