Geography Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/2773

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Effects of scale and spatial variability on hydraulic geometry in the Potomac River Basin
    (2006-02-01) Read, Chung Hye Kim; Thompson, Derek; Geography; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Scale issues in hydrology arise because different hydrological processes are dominant at different regional scales. Recent hydrological research suggests that the geographic scale (size) of watersheds may influence the behavior of hydraulic geometry exponents (b and f, but not m values) of stream channels. Hence, the working hypothesis of this study is that variations of hydraulic geometry exponents are not random, but that there are systematic changes as a function of geographic scale as well as of water basin and channel physical and environmental characteristics (predictor variables). To support this analysis, 43 subbasins in the Potomac River Basin ranging in size from 0.38 square miles to 1,642 square miles and representing a broad spatial diversity of predictor variables within the watershed were selected for study. Research goals were to attempt, via empirical correlations, to discern relationships between a geographic scale factor and b, f, and m values, to investigate the roles of predictor variables on b, f, and m values, and their statistical significance, and to identify the most influential predictor variables and the complexity of fluvial physical processes via stepwise multi-variable regressions. Statistical evidence was found that there is a relationship between geographic scale and hydraulic geometry exponents. In every selected predictor variable case, investigation of the correlations between b, f, and m with a single selected predictor variable in a scale context resulted in a noticeable improvement over the correlations of the hydraulic exponents with each individual predictor variable alone. The research shows that, under higher discharges, the behavior of b, f, and m mainly result in higher m and f, with a slight increase in cross-sectional area (f with negative b) in a scale context.
  • Thumbnail Image
    Item
    RADAR MONITORING OF HYDROLOGY IN MARYLAND'S FORESTED COASTAL PLAIN WETLANDS: IMPLICATIONS FOR PREDICTED CLIMATE CHANGE AND IMPROVED MAPPING
    (2005-08-05) Weiner Lang, Megan; Kasischke, Eric; Geography; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Wetlands provide important services to society but Mid-Atlantic wetlands are at high risk for loss, with forested wetlands being especially vulnerable. Hydrology (flooding and soil moisture) controls wetland function and extent but it may be altered due to changes in climate and anthropogenic influence. Wetland hydrology must better understood in order to predict and mitigate the impact of these changes. Broad-scale forested wetland hydrology is difficult to monitor using ground-based and traditional remote sensing methods. C-band synthetic aperture radar (SAR) data could improve the capability to monitor forested wetland hydrology but the abilities and limitations of these data need further investigation. This study examined: 1) the link between climate and wetland hydrology; 2) the ability of ENVISAT SAR (C-HH and C-VV) data to monitor inundation and soil moisture in forested wetlands; 3) limitations inherent to C-band data (incidence angle, polarization, and phenology) when monitoring forested wetland hydrology; and 4) the accuracy of forested wetland maps produced using SAR data. The study was primarily conducted near the Patuxent River in Maryland but the influence of incidence angle was considered along the Roanoke River in North Carolina. This study showed: 1) climate was highly correlated with wetland inundation; 2) significant differences in C-VV and C-HH backscatter existed between forested areas of varying hydrology (uplands and wetlands) throughout the year; 3) C-HH backscatter was better correlated to hydrology than C-VV backscatter; 4) correlations were stronger during the leaf-off season; 5) the difference in backscatter between flooded and non-flooded areas did not sharply decline with incidence angle, as predicted; and 6) maps produced using SAR data had relatively high accuracy levels. Based on these findings, I concluded that hydrology is influenced by climate at the study site, and C-HH data should be able to monitor changes in hydrology throughout the year. Larger incidence angles should be explored when using C-HH data to monitor forested wetland hydrology, and C-band SAR has the potential to increase the ability to map forested wetlands throughout the year. The methods developed have the potential to fill the need of managers for increased hydrologic information and improved forested wetland maps.