Geography Theses and Dissertations
Permanent URI for this collectionhttp://hdl.handle.net/1903/2773
Browse
2 results
Search Results
Item DEEP LEARNING APPROACHES FOR ESTIMATING AND FORECASTING SURFACE DOWNWARD SHORTWAVE RADIATION FROM SATELLITE DATA(2024) Li, Ruohan; Wang, Dongdong; Geography; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Surface downward shortwave radiation (DSR) designates solar radiation with a wavelength from 300 to 4000 nm received at the Earth’s surface. DSR plays a pivotal role in the surface energy and radiation budget, serving as the primary driver for hydrological, ecological, and biogeochemical cycles (Liang et al., 2010, 2019), and the important input for various earth models (Huang et al., 2019; Liang et al., 2010; Stephens et al., 2012). Given the rising demand for renewable energy, as well as accelerated advancements in solar energy technologies on both utility-scale and residential scale, the precision and resolution in estimating and forecasting DSR have become indispensable for planning and administering solar power plants (Gueymard, 2014; Jiang et al., 2019). This dissertation delves into the potential of integrating deep learning with satellite observations to address the deficiencies in current DSR estimation and forecasting methods, aiming to cater to the evolving needs of solar radiation estimation. The research begins by examining current DSR satellite products, emphasizing their limitations, particularly concerning spatial resolution and performance in snowy, cloudy, and high-latitude areas. In such regions, challenges arise from the degradation of radiative transfer models, band saturation, the pronounced effects of 3D cloud dynamics, and temporal resolution constraints (Li et al., 2021). Identifying these gaps, the study introduces the concept of transfer learning to tackle cases where physical methods degrade and limited training data is available. By combining data from physical simulations and ground observations, the proposed models enhance both the accuracy and adaptability of DSR predictions on a global scale. The investigation further reveals the influence of training data volume on model performance, illustrating how transfer learning can ameliorate these effects (Li et al., 2022). Moreover, the dissertation compares the application of DenseNet, Gated Recurrent Unit (GRU), and a hybrid of Convolutional Neural Network (CNN) and GRU (CNNGRU) to geostationary satellite data, achieving precise and timely DSR estimates. These models underscore their prowess in tackling 3D cloud effects and reducing dependency on additional data sources by the spatial and temporal structure of DL (Li et al., 2023b). Finally, the dissertation introduces the SolarFormer, a space-time transformer neural network adept at forecasting solar radiation up to three hours in advance at 15-minute intervals. By harnessing solely geostationary satellite imagery without the need for ground measurements, this model facilitates expansive DSR predictions, which are crucial for optimizing solar energy distribution at both utility and micro scales. This chapter also highlights the Transformer model's potential for extended forecasting due to its computational and memory efficiency.Item GLOBAL BARE GROUND GAIN BETWEEN 2000 AND 2012 AND THE RELATIONSHIP WITH SOCIOECONOMIC DEVELOPMENT(2020) Ying, Qing; Hansen, Matthew C; Geography; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Bare ground gain -- the complete removal of vegetation due to land use changes, represents an extreme land cover transition that completely alters the structure and functioning of ecosystems. The fast expansion of bare ground cover is directly associated with increasing population and urbanization, resulting in accelerated greenhouse gas emissions, intensified urban heat island phenomenon, and extensive habitat fragments and loss. While the economic return of settlement and infrastructure construction has improved human livelihoods, the negative impacts on the environment have disproportionally affected vulnerable population, creating inequality and tension in society. The area, distribution, drivers, and change rates of global bare ground gain were not systematically quantified; neither was the relationship between such dynamics and socioeconomic development. This dissertation seeks methods for operational characterization of bare ground expansion, advances our understanding of the magnitudes, dynamics, and drivers of global bare ground gain between 2000 and 2012, and uncovers the implications of such change for macro-economic development monitoring, all through Landsat satellite observations. The approach that employs wall-to-wall maps of bare ground gain classified from Landsat imagery for probability sample selection is proved particularly effective for unbiased area estimation of global, continental, and national bare ground gain, as a small land cover and land use change theme. Anthropogenic land uses accounted for 95% of the global bare ground gain, largely consisting of commercial/residential built-up, infrastructure development, and resource extraction. China and the United States topped the total area increase in bare ground. Annual change rates of anthropogenic bare ground gain are found as a leading indicator of macro-economic change in the study period dominated by the 2007-2008 global financial crisis, through econometric analysis between annual gains in the bare ground of different land use outcomes and economic fluctuations in business cycles measured by detrended economic variables. Instead of intensive manual interpretation of land-use attributes of probability sample, an approach of integrating a pixel- and an object- based deep learning algorithms is proposed and tested feasible for automatic attribution of airports, a transportation land use with economic importance.