Cell Biology & Molecular Genetics Research Works
Permanent URI for this collectionhttp://hdl.handle.net/1903/14
Browse
Item Novel Modular Rhodopsins from Green Algae Hold Great Potential for Cellular Optogenetic Modulation Across the Biological Model Systems(MDPI, 2020-10-28) Awasthi, Mayanka; Sushmita, Kumari; Kaushik, Manish Singh; Ranjan, Peeyush; Kateriya, SuneelLight-gated ion channel and ion pump rhodopsins are widely used as optogenetic tools and these can control the electrically excitable cells as (1) they are a single-component system i.e., their light sensing and ion-conducting functions are encoded by the 7-transmembrane domains and, (2) they show fast kinetics with small dark-thermal recovery time. In cellular signaling, a signal receptor, modulator, and the effector components are involved in attaining synchronous regulation of signaling. Optical modulation of the multicomponent network requires either receptor to effector encoded in a single ORF or direct modulation of the effector domain through bypassing all upstream players. Recently discovered modular rhodopsins like rhodopsin guanylate cyclase (RhoGC) and rhodopsin phosphodiesterase (RhoPDE) paves the way to establish a proof of concept for utilization of complex rhodopsin (modular rhodopsin) for optogenetic applications. Light sensor coupled modular system could be expressed in any cell type and hence holds great potential in the advancement of optogenetics 2.0 which would enable manipulating the entire relevant cell signaling system. Here, we had identified 50 novel modular rhodopsins with variant domains and their diverse cognate signaling cascades encoded in a single ORF, which are associated with specialized functions in the cells. These novel modular algal rhodopsins have been characterized based on their sequence and structural homology with previously reported rhodopsins. The presented novel modular rhodopsins with various effector domains leverage the potential to expand the optogenetic tool kit to regulate various cellular signaling pathways across the diverse biological model systems.Item The Sialoside-Binding Pocket of SARS-CoV-2 Spike Glycoprotein Structurally Resembles MERS-CoV(MDPI, 2020-08-19) Awasthi, Mayanka; Gulati, Sahil; Sarkar, Debi P.; Tiwari, Swasti; Kateriya, Suneel; Ranjan, Peeyush; Verma, Santosh KumarCOVID-19 novel coronavirus (CoV) disease caused by severe acquired respiratory syndrome (SARS)-CoV-2 manifests severe lethal respiratory illness in humans and has recently developed into a worldwide pandemic. The lack of effective treatment strategy and vaccines against the SARS-CoV-2 poses a threat to human health. An extremely high infection rate and multi-organ secondary infection within a short period of time makes this virus more deadly and challenging for therapeutic interventions. Despite high sequence similarity and utilization of common host-cell receptor, human angiotensin-converting enzyme-2 (ACE2) for virus entry, SARS-CoV-2 is much more infectious than SARS-CoV. Structure-based sequence comparison of the N-terminal domain (NTD) of the spike protein of Middle East respiratory syndrome (MERS)-CoV, SARS-CoV, and SARS-CoV-2 illustrate three divergent loop regions in SARS-CoV-2, which is reminiscent of MERS-CoV sialoside binding pockets. Comparative binding analysis with host sialosides revealed conformational flexibility of SARS-CoV-2 divergent loop regions to accommodate diverse glycan-rich sialosides. These key differences with SARS-CoV and similarity with MERS-CoV suggest an evolutionary adaptation of SARS-CoV-2 spike glycoprotein reciprocal interaction with host surface sialosides to infect host cells with wide tissue tropism.