Kinesiology Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/2784

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Sensory feedback modulates maximum voluntary force production during multi-finger pressing
    (2012) Karol, Sohit; Shim, Jae Kun; Kinesiology; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The human hand is an excellent example of an effector capable of producing a wide range of forces for everyday manipulation tasks such as pressing, grasping and rotating objects. Both maximal and sub-maximal forces are essential for dexterous manipulation, and sensory feedback plays a critical role in successful completion of such tasks. While the role of sensory feedback in conducting sub-maximal force production has been a topic of extensive research, little is known about how sensory feedback affects the maximum voluntary force (MVF) and the multi-digit interactions (MDI) by the digits of the hand. The purpose of this study was to investigate the effect of cutaneous and visual feedback on MVF and MDI. The dissertation investigates five specific aims through five corresponding experiments. The first three specific aims investigate the effect of cutaneous feedback while the last two specific aims investigate the effect of visual feedback on MVF and MDI: specific aim 1 investigates the effect of digital anesthesia; specific aim 2 investigates the effect of transcutaneous electrical nerve stimulation (TENS); specific aim 3 investigates the effect of texture of the pressing surface; specific aim 4 investigates the effect of real-time visual feedback of digit forces; specific aim 5 investigates the effect of ambient light intensity. Young, healthy, right-handed subjects without any history of neurological disorders participated in the experiments. A within-subject design was employed for all five experiments and the experimental setup was designed to restrict any changes in digit forces due to biomechanical factors. Thus, any changes in the dependent variables could be attributed to the neural factors alone. Results from the first three experiments indicate that loss of cutaneous feedback due to digital anesthesia results in up to 25% decrease in MVF, while the stimulation of cutaneous receptors by TENS or by changing the surface texture results in up to 20% increase in MVF. Results from the last two experiments indicate that providing a real-time visual feedback of digit forces increases the MVF by up to 25%, while a fifteen minute exposure to high intensity ambient light increases the MVF by up to 20%. In addition, MDI also depends on the type of sensory feedback presented to the subjects. These results suggest that both, the magnitude as well as the distribution of neural commands to the hand and forearm muscles changes with different sensory feedback conditions. Potential neuromuscular mechanisms responsible for these changes in MVF and FDI with different types of sensory feedbacks have been discussed.
  • Item
    Effect of kinetic degrees of freedom in multi-finger force and moment stabilizing synergies.
    (2008-09-02) Karol, Sohit; Shim, Jae Kun; Kinesiology; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The purpose of the present study was to test the principle of motor abundance as compared to motor redundance, by investigating the changes in force stabilizing and moment stabilizing synergies for pressing tasks involving different number of fingers (IM, IR, IL, MR, ML, RL, IMR, IML, IRL, MRL, IMRL; where I=Index, M=Middle, R=Ring, L=Little). Twelve healthy right-handed subjects (6 males and 6 females, 27 4.3 years) participated in the experiment. Subjects were explicitly provided a visual feedback of forces for a constant multi finger force production task. Since subjects were explicitly given a visual feedback of their performance for the force production task, strong force stabilizing synergies were expected (Hypothesis 1). Based on the principle of abundance, we hypothesized that the force stabilizing synergies would increase with the number of fingers (Hypothesis 2). Assuming that the precise moment stabilizing synergies are conditioned by everyday prehension experiences, we hypothesized that moment stabilizing synergies, if existing, would increase with the number of fingers, since all the fingers are generally used for everyday prehension and manipulation tasks, and such tasks require a precise control of moments (Hypothesis 3). Also, if both the synergies existed simultaneously, we hypothesized that those synergies would be more prominent when more fingers are involved in the task (Hypothesis 4).It was found that strong force stabilizing synergies existed for all the finger combinations, thus confirming our first hypothesis. However, these force stabilizing synergies reduced with an increase in the number of task fingers, disproving our second hypothesis. Moment destabilizing synergies were found for the two finger combinations and no moment synergies were present for the three finger combinations. However, moment stabilizing synergies existed for the four finger combinations. This confirmed our third and fourth hypothesis. We interpret the findings an evidence for the principle of abundance for stabilization of moments during pressing tasks, regardless of the fact that only the visual feedback of forces was given to the subjects.