Browsing by Author "Ben-Yoav, Hadar"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item The Binding Effect of Proteins on Medications and Its Impact on Electrochemical Sensing: Antipsychotic Clozapine as a Case Study(Multidisciplinary Digital Publishing Institute (MDPI), 2017-08-01) Banis, George E.; Winkler, Thomas; Barton, Patricia; Chocron, Sheryl E.; Kim, Eunkyoung; Kelly, Deanna L.; Payne, Gregory F.; Ben-Yoav, Hadar; Ghodssi, RezaClozapine (CLZ), a dibenzodiazepine, is demonstrated as the optimal antipsychotic for patients suffering from treatment-resistant schizophrenia. Like many other drugs, understanding the concentration of CLZ in a patient’s blood is critical for managing the patients’ symptoms, side effects, and overall treatment efficacy. To that end, various electrochemical techniques have been adapted due to their capabilities in concentration-dependent sensing. An open question associated with electrochemical CLZ monitoring is whether drug–protein complexes (i.e., CLZ bound to native blood proteins, such as serum albumin (SA) or alpha-1 acid-glycoprotein (AAG)) contribute to electrochemical redox signals. Here, we investigate CLZ-sensing performance using fundamental electrochemical methods with respect to the impact of protein binding. Specifically, we test the activity of bound and free fractions of a mixture of CLZ and either bovine SA or human AAG. Results suggest that bound complexes do not significantly contribute to the electrochemical signal for mixtures of CLZ with AAG or SA. Moreover, the fraction of CLZ bound to protein is relatively constant at 31% (AAG) and 73% (SA) in isolation with varying concentrations of CLZ. Thus, electrochemical sensing can enable direct monitoring of only the unbound CLZ, previously only accessible via equilibrium dialysis. The methods utilized in this work offer potential as a blueprint in developing electrochemical sensors for application to other redox-active medications with high protein binding more generally. This demonstrates that electrochemical sensing can be a new tool in accessing information not easily available previously, useful toward optimizing treatment regimens.Item Chitosan to Connect Biology to Electronics: Fabricating the Bio-Device Interface and Communicating Across This Interface(MDPI, 2014-12-24) Kim, Eunkyoung; Xiong, Yuan; Cheng, Yi; Wu, Hsuan-Chen; Liu, Yi; Morrow, Brian H.; Ben-Yoav, Hadar; Ghodssi, Reza; Rubloff, Gary W.; Shen, Jana; Bentley, William E.; Shi, Xiaowen; Payne, Gregory F.Individually, advances in microelectronics and biology transformed the way we live our lives. However, there remain few examples in which biology and electronics have been interfaced to create synergistic capabilities. We believe there are two major challenges to the integration of biological components into microelectronic systems: (i) assembly of the biological components at an electrode address, and (ii) communication between the assembled biological components and the underlying electrode. Chitosan possesses a unique combination of properties to meet these challenges and serve as an effective bio-device interface material. For assembly, chitosan’s pH-responsive film-forming properties allow it to “recognize” electrode-imposed signals and respond by self-assembling as a stable hydrogel film through a cathodic electrodeposition mechanism. A separate anodic electrodeposition mechanism was recently reported and this also allows chitosan hydrogel films to be assembled at an electrode address. Protein-based biofunctionality can be conferred to electrodeposited films through a variety of physical, chemical and biological methods. For communication, we are investigating redox-active catechol-modified chitosan films as an interface to bridge redox-based communication between biology and an electrode. Despite significant progress over the last decade, many questions still remain which warrants even deeper study of chitosan’s structure, properties, and functions.Item Effect of electrical energy on the efficacy of biofilm treatment using the bioelectric effect(Nature Publishing Group, 2015-09-23) Kim, Young Wook; Subramanian, Sowmya; Gerasopoulos, Konstantinos; Ben-Yoav, Hadar; Wu, Hsuan-Chen; Quan, David; Carter, Karen; Meyer, Mariana T.; Bentley, William E.; Ghodssi, RezaBACKGROUND/OBJECTIVES: The use of electric fields in combination with small doses of antibiotics for enhanced treatment of biofilms is termed the ‘bioelectric effect’ (BE). Different mechanisms of action for the AC and DC fields have been reported in the literature over the last two decades. In this work, we conduct the first study on the correlation between the electrical energy and the treatment efficacy of the bioelectric effect on Escherichia coli K-12 W3110 biofilms. METHODS: A thorough study was performed through the application of alternating (AC), direct (DC) and superimposed (SP) potentials of different amplitudes on mature E. coli biofilms. The electric fields were applied in combination with the antibiotic gentamicin (10 μg/ml) over a course of 24 h, after the biofilms had matured for 24 h. The biofilms were analysed using the crystal violet assay, the colony-forming unit method and fluorescence microscopy. RESULTS: Results show that there is no statistical difference in treatment efficacy between the DC-, AC- and SP-based BE treatment of equivalent energies (analysis of variance (ANOVA) P > 0.05) for voltages < 1 V. We also demonstrate that the efficacy of the BE treatment as measured by the crystal violet staining method and colony-forming unit assay is proportional to the electrical energy applied (ANOVA P < 0.05). We further verify that the treatment efficacy varies linearly with the energy of the BE treatment (r2 = 0.984). Our results thus suggest that the energy of the electrical signal is the primary factor in determining the efficacy of the BE treatment, at potentials less than the media electrolysis voltage. CONCLUSIONS: Our results demonstrate that the energy of the electrical signal, and not the type of electrical signal (AC or DC or SP), is the key to determine the efficacy of the BE treatment. We anticipate that this observation will pave the way for further understanding of the mechanism of action of the BE treatment method and may open new doors to the use of electric fields in the treatment of bacterial biofilms.Item The Binding Effect of Proteins on Medications and Its Impact on Electrochemical Sensing: Antipsychotic Clozapine as a Case Study(MDPI, 2017-08-01) Banis, George E.; Winkler, Thomas; Barton, Patricia; Chocron, Sheryl E.; Kim, Eunkyoung; Kelly, Deanna L.; Payne, Gregory F.; Ben-Yoav, Hadar; Ghodssi, RezaClozapine (CLZ), a dibenzodiazepine, is demonstrated as the optimal antipsychotic for patients suffering from treatment-resistant schizophrenia. Like many other drugs, understanding the concentration of CLZ in a patient’s blood is critical for managing the patients’ symptoms, side effects, and overall treatment efficacy. To that end, various electrochemical techniques have been adapted due to their capabilities in concentration-dependent sensing. An open question associated with electrochemical CLZ monitoring is whether drug–protein complexes (i.e., CLZ bound to native blood proteins, such as serum albumin (SA) or alpha-1 acid-glycoprotein (AAG)) contribute to electrochemical redox signals. Here, we investigate CLZ-sensing performance using fundamental electrochemical methods with respect to the impact of protein binding. Specifically, we test the activity of bound and free fractions of a mixture of CLZ and either bovine SA or human AAG. Results suggest that bound complexes do not significantly contribute to the electrochemical signal for mixtures of CLZ with AAG or SA. Moreover, the fraction of CLZ bound to protein is relatively constant at 31% (AAG) and 73% (SA) in isolation with varying concentrations of CLZ. Thus, electrochemical sensing can enable direct monitoring of only the unbound CLZ, previously only accessible via equilibrium dialysis. The methods utilized in this work offer potential as a blueprint in developing electrochemical sensors for application to other redox-active medications with high protein binding more generally. This demonstrates that electrochemical sensing can be a new tool in accessing information not easily available previously, useful toward optimizing treatment regimens.