Fast Evaluation of Demagnetizing Field in Three Dimensional Micromagnetics using Multipole Approximation

dc.contributor.authorTan, Xiaoboen_US
dc.contributor.authorBaras, John S.en_US
dc.contributor.authorKrishnaprasad, Perinkulam S.en_US
dc.contributor.departmentISRen_US
dc.date.accessioned2007-05-23T10:10:43Z
dc.date.available2007-05-23T10:10:43Z
dc.date.issued2001en_US
dc.description.abstractComputational micromagnetics in three dimensions is of increasing interest with the development of magnetostrictivesensors and actuators. <p>In solving the Landau-Lifshitz-Gilbert (LLG) equation, the governing equation of magneticdynamics for ferromagnetic materials, we need to evaluate the effective field. The effective field consists of severalterms, among which the demagnetizing field is of long-range nature. Evaluating the demagnetizing field directlyrequires work of O(N2) for a grid of N cells and thus it is the bottleneck in computational micromagnetics. Afast hierarchical algorithm using multipole approximation is developed to evaluate the demagnetizing field. <p>Wefirst construct a mesh hierarchy and divide the grid into boxes of different levels. The lowest level box is thewhole grid while the highest level boxes are just cells. The approximate field contribution from the cells containedin a box is characterized by the box attributes, which are obtained via multipole approximation. <p>The algorithmcomputes field contributions from remote cells using attributes of appropriate boxes containing those cells, and itcomputes contributions from adjacent cells directly. <p>Numerical results have shown that the algorithm requires workof O(NlogN) and at the same time it achieves high accuracy. It makes micromagnetic simulation in three dimensionsfeasible.en_US
dc.format.extent303196 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/1903/6200
dc.language.isoen_USen_US
dc.relation.ispartofseriesISR; TR 2001-31en_US
dc.subjectSensor-Actuator Networksen_US
dc.titleFast Evaluation of Demagnetizing Field in Three Dimensional Micromagnetics using Multipole Approximationen_US
dc.typeTechnical Reporten_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR_2001-31.pdf
Size:
296.09 KB
Format:
Adobe Portable Document Format