Development of improved recombinant NDV-vectored vaccines against highly pathogenic avian influenza virus (HPAIV)

Loading...
Thumbnail Image

Files

RoyChowdhury_umd_0117E_23684.pdf (2.31 MB)
(RESTRICTED ACCESS)
No. of downloads:

Publication or External Link

Date

2023

Citation

Abstract

Highly pathogenic avian influenza viruses (HPAIV) are highly contagious and economically devastating poultry pathogens with a documented transmission to humans causing severe human infections with high mortality. Circulation of these viruses is of public health concern as they have the pandemic potential to mutate to increase transmissibility among humans. The diversity of zoonotic influenza viruses causing human infections is alarming and effective vaccination is needed to control these viruses. Influenza viruses particularly with H7 and H5 subtypes of HA can naturally switch to a highly pathogenic phenotype through different mechanisms. Currently available vaccines are not satisfactory as they are mostly inactivated vaccines that require labor-intensive administration methods and provide suboptimal protection of vaccinated birds. Viral vectors offer crucial advantages over traditional vaccines, including induction of outstanding antibody and cytotoxic lymphocyte responses which is important for the control of viral infections.

Newcastle Disease virus (NDV) is a promising vaccine vector for HPAIV since it is highly restricted for replication in the respiratory tract of poultry, it can be easily administered, and it induces both local and systemic immune responses. H7 influenza viruses are classified into two major genetic lineages, American and Eurasian. To develop a universal anti-H7 vaccine, we generated NDV vectors expressing chimeric HA sequences covering both North American and Asian isolates. In the first project, we designed NDV-vectored vaccines against HPAI H7N8 infection. The Hemagglutinin (HA) protein of influenza viruses is responsible for virus attachment to host cell and is the major target of the humoral immune response. Accordingly, we developed vaccines against HPAIV by generating recombinant NDV vectored H7 serotype-specific vaccines expressing HA protein. We also evaluated the protective efficacy of these recombinant vaccines against highly virulent H7 challenges in both broiler chickens and turkeys and the results were promising for broiler chickens, but for turkeys the vaccination design and scheme need to be further modified.

In the second part of the study, we designed some recombinant NDV-vectored vaccines with an increased level of expression of H5HA antigen. The transcriptional unit of NDV contains a major open reading frame flanked by 5’ and 3’ untranslated regions (UTRs) followed by conserved transcriptional initiation and termination control sequences. Previous studies have shown that the addition of UTRs of P, M, and F genes positively modulated foreign gene expression. Hence, we hypothesized that cognate NDV mRNA UTRs would improve the expression of a protective antigen by an NDV-vectored vaccine. We generated recombinant NDVs where the HA of the HPAIV strain H5N1 is flanked by 5’ and 3’UTRs of NDV genes and determined the growth characteristics of these recombinant viruses, their stability, the level of HA expression and their transcription and translation modulation. Both studies aimed for the advancement of NDV-vectored vaccines emphasizing the fact of better expression of the protective antigen and improved immunogenicity for avian influenza virus considering two important strains of H5 and H7.

Notes

Rights