A New Role for the CYT-18 N-Terminus and Three-Dimensional DNA Crystals as Vehicles for Biocatalysis

dc.contributor.advisorPaukstelis, Paul Jen_US
dc.contributor.authorGeng, Chunen_US
dc.contributor.departmentBiochemistryen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2014-06-24T06:12:32Z
dc.date.available2014-06-24T06:12:32Z
dc.date.issued2014en_US
dc.description.abstractThe bifunctional Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (N. crassa mt TyrRS; CYT-18 protein) promotes the splicing of multiple group I introns by stabilizing the catalytically active intron structures. CYT-18, and mt TyrRS's from related fungal species, have evolved to promote group I intron splicing partly by accumulation of three N-terminal domain insertions that create a structure-stabilizing scaffold for critical tertiary interactions between the two major group I intron domains. The primarily alpha-helical N-terminal insertion, H0, contributes to protein stability and is necessary for splicing the N. crassa ND1 intron, but is dispensable for splicing the N. crassa mt LSU intron. Herein, I show CYT-18 with a complete H0 deletion retains residual ND1 intron splicing activity and addition of the missing N-terminus in trans restores a significant portion of its splicing activity. This peptide complementation assay revealed important characteristics of the CYT-18/group I intron interaction including the stoichiometry of H0 in intron splicing and the importance of specific H0 residues. Evaluation of truncated H0 peptides in this assay also suggests a previously unknown structural role of the first five N-terminal residues of CYT-18. These residues interact directly with another splicing insertion, making H0 a central structural element responsible for connecting all three N-terminal splicing insertions. Transitioning to a separate study, I have demonstrated that enzymes retain catalytic activity when captured in the solvent channels of three-dimensional (3D) DNA crystals. Using RNase A as a model enzyme system this work shows that crystals infused with enzyme can cleave a fluorescent dinucleotide substrate with similar kinetic restrictions as other immobilized enzyme systems, mainly limited by diffusion of substrate. This new vehicle for immobilized enzymes, created entirely from biomolecules, provides a platform for developing modular solid-state catalysts that could be both biocompatible and biodegradable.en_US
dc.identifier.urihttp://hdl.handle.net/1903/15356
dc.language.isoenen_US
dc.subject.pqcontrolledBiochemistryen_US
dc.subject.pqcontrolledMolecular biologyen_US
dc.subject.pqcontrolledBiomedical engineeringen_US
dc.subject.pquncontrolledDNA nanotechnologyen_US
dc.subject.pquncontrolledenzyme containeren_US
dc.subject.pquncontrolledgroup I intronen_US
dc.subject.pquncontrolledpeptide complementationen_US
dc.subject.pquncontrolledprotein splicing cofactoren_US
dc.subject.pquncontrolledsolid state biocatalysten_US
dc.titleA New Role for the CYT-18 N-Terminus and Three-Dimensional DNA Crystals as Vehicles for Biocatalysisen_US
dc.typeDissertationen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Geng_umd_0117E_15176.pdf
Size:
33.63 MB
Format:
Adobe Portable Document Format