Mesozoic subduction shaped lower mantle structures beneath the East Pacific Rise

No Thumbnail Available

Files

readme.txt (697 B)
No. of downloads: 12
MTZ_depth.txt (14.44 KB)
No. of downloads: 7
MTZ_depth_uncertainty.txt (18.05 KB)
No. of downloads: 5

Related Publication Link

Date

2024

Related Publication Citation

Abstract

The morphology of the Large Low Shear Velocity Provinces (LLSVPs) has been a subject of debate for decades. Large-scale features of the Pacific LLSVP, as revealed by cluster analysis of global tomographic models, suggest three distinct portions. Notably, the East Pacific Anomaly and the Superswell Anomaly are characterized by a ~20 deg wide gap. The cause of the structural gap remains unclear, and there has been no direct evidence for a subduction episode beneath the region. In this study, we take advantage of an up-to-date SS precursor data set that samples the Nazca Plate and investigate the high-resolution seismic structure at mantle transition zone (MTZ) depths. We find that much of the southern East Pacific Rise is underlain by a thin MTZ due to the depressed 410 by up to 15 km, which suggests along-ridge temperature variations extending into the MTZ. East of the East Pacific Rise, the MTZ is characterized by anomalous thickening and fast seismic velocities from seismic tomography, consistent with the presence of cold subducted slab material intersecting the MTZ. Furthermore, recent global tomographic models reveal a slab-like structure throughout the MTZ and lower mantle, which is also evidenced by tomographic vote maps, albeit with less visibility. The observations reconcile with Mesozoic intraoceanic subduction beneath the present-day Nazca Plate, which is predicted by an earlier plate reconstruction model of proto-Pacific Ocean. The subduction initiated ~250 Myr ago and ceased before 120 Myr ago. The implications of this discovery are that the shape of the eastern portion of the Pacific LLSVP was separated by downwelling associated with this ancient subducted slab.

Notes

Rights