Predicting Protein-Protein Interactions Using Relational Features
Files
Publication or External Link
Date
Authors
Advisor
Citation
DRUM DOI
Abstract
Proteins play a fundamental role in ever y process within the cell. Understanding how proteins interact, and the functional units they are par t of, is important to furthering our knowledge of the entire biological process. There has been a growing amount of work, both experimental and computational, on determining the protein-protein interaction network. Recently researchers have had success looking at this as a relational learning problem. In this work, we further this investigation, proposing several novel relational features for predicting protein-protein interaction. These features can be used in any classifier. Our approach allows large and complex networks to be analyzed and is an alternative to using more expensive relational methods. We show that we are able to get an accuracy of 81.7% when predicting new links from noisy high throughput data.