University of Maryland DRUM  
University of Maryland Digital Repository at the University of Maryland

Digital Repository at the University of Maryland (DRUM) >
Theses and Dissertations from UMD >
UMD Theses and Dissertations >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1903/12757

Title: Beyond orientability and compactness: new results on the dynamics of flat surfaces
Authors: Treviño, Rodrigo
Advisors: Forni, Giovanni
Department/Program: Mathematics
Type: Dissertation
Sponsors: Digital Repository at the University of Maryland
University of Maryland (College Park, Md.)
Subjects: Mathematics
Keywords: Flat surface
Teichmuller dynamics
Veech group
Issue Date: 2012
Abstract: In the first part, we prove the non-uniform hyperbolicity of the Kontsevich-Zorich cocycle for a measure supported on abelian differentials which come from non-orientable quadratic differentials. The proof uses Forni's criterion for non-uniform hyperbolicity of the cocycle for SL(2;R)-invariant measures. We apply these results to the study of deviations in homology of typical leaves of the vertical and horizontal (non-orientable) foliations and deviations of ergodic averages. In the second part, we prove an ergodic theorem for flat surfaces of finite area whose Teichmuller orbits are recurrent to a compact set of SL(2;R)/SL(S), where SL(S) is the Veech group of the surface. In this setting, this means that the translation flow on a flat surface can be renormalized through its Veech group. This result applies in particular to flat surfaces of infinite genus and finite area, and we apply our result to existing surfaces in the literature to prove that the corresponding foliations of the surface corresponding to a periodic or recurrent Teichmuller orbit are ergodic.
URI: http://hdl.handle.net/1903/12757
Appears in Collections:UMD Theses and Dissertations
Mathematics Theses and Dissertations

Files in This Item:

File Description SizeFormatNo. of Downloads
Trevio_umd_0117E_13164.pdf558.15 kBAdobe PDF120View/Open

All items in DRUM are protected by copyright, with all rights reserved.

 

DRUM is brought to you by the University of Maryland Libraries
University of Maryland, College Park, MD 20742-7011 (301)314-1328.
Please send us your comments