University of Maryland DRUM  
University of Maryland Digital Repository at the University of Maryland

DRUM >
Theses and Dissertations from UMD >
UMD Theses and Dissertations >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1903/10992

Title: Proteomic Analysis of Human Urinary Exosomes
Authors: Gonzales, Patricia Amalia
Advisors: Wang, Nam Sun
Department/Program: Chemical Engineering
Type: Dissertation
Sponsors: Digital Repository at the University of Maryland
University of Maryland (College Park, Md.)
Subjects: Chemical Engineering
Biomedical Engineering
Keywords: Biomarker Discovery
Human Urinary Exosomes
Proteomics
Issue Date: 2009
Abstract: Exosomes originate as the internal vesicles of multivesicular bodies (MVBs) in cells. These small vesicles (40-100 nm) have been shown to be secreted by most cell types throughout the body. In the kidney, urinary exosomes are released to the urine by fusion of the outer membrane of the MVBs with the apical plasma membrane of renal tubular epithelia. Exosomes contain apical membrane and cytosolic proteins and can be isolated using differential centrifugation. The analysis of urinary exosomes provides a non-invasive means of acquiring information about the physiological or pathophysiological state of renal cells. The overall objective of this research was to develop methods and knowledge infrastructure for urinary proteomics. We proposed to conduct a proteomic analysis of human urinary exosomes. The first objective was to profile the proteome of human urinary exosomes using liquid chromatography-tandem spectrometry (LC-MS/MS) and specialized software for identification of peptide sequences from fragmentation spectra. We unambiguously identified 1132 proteins. In addition, the phosphoproteome of human urinary exosomes was profiled using the neutral loss scanning acquisition mode of LC-MS/MS. The phosphoproteomic profiling identified 19 phosphorylation sites corresponding to 14 phosphoproteins. The second objective was to analyze urinary exosomes samples isolated from patients with genetic mutations. Polyclonal antibodies were generated to recognize epitopes on the gene products of these genetic mutations, NKCC2 and MRP4. The potential usefulness of urinary exosome analysis was demonstrated using the well-defined renal tubulopathy, Bartter syndrome type I and using the single nucleotide polymorphism in the ABCC4 gene. The third objective was to study the normal variability between proteomes of female and male urinary exosomes, and to implement a normalization method to analyze urinary exosome samples. Only 19 proteins had a 2-fold change representing 4.9% of the total number of proteins identified which shows that there is high concordance between proteomes of urinary exosomes isolated from males and females. The normalization method, timed urine collection did not correlate as expected with the intensity signal of MVB markers, TSG101 and Alix. This research shows that the proteomic analysis of human urinary exosomes can be the basis for future biomarker studies as well as physiological studies.
URI: http://hdl.handle.net/1903/10992
Appears in Collections:UMD Theses and Dissertations
Chemical and Biomolecular Engineering Theses and Dissertations

Files in This Item:

File Description SizeFormatNo. of Downloads
Gonzales_umd_0117E_10323.pdf2.6 MBAdobe PDF1062View/Open

All items in DRUM are protected by copyright, with all rights reserved.

 

DRUM is brought to you by the University of Maryland Libraries
University of Maryland, College Park, MD 20742-7011 (301)314-1328.
Please send us your comments. -
All Contents