Thompson, RichardEarly transition metals (group IV-VI) supported by the pentamethylcyclopentadienyl-amidinate mixed ligand set (CPAM) have been found to enable a number of important chemical transformations including (living) coordinative polymerization of alpha-olefins, fixation of dinitrogen and group transfer chemistry involving oxo, imido and sulfido ligands to unsaturated organic substrates, including carbon dioxide. A great deal of the allure and success associated with these complexes is their modularity, particularly as it concerns the amidinate component which is tunable at both the N-bound substituents as well as the distal position. Accordingly, a great deal of work has established that by reducing the sterics in all three positions engendered higher reactivity. There exists, however, a practical “steric wall” such that the size of substituents can only be contracted so much. Tuning of the electronic character of these well-established systems could prove to be a novel and potent method for affecting reactivity of these complexes within an already well understood steric environment.enELECTRONIC MODIFICATION WITHIN THE WELL-ESTABLISHED CPAM FRAMEWORK AS A MEANS TOWARD INCREASED REACTIVITYDissertationInorganic chemistryOrganic chemistryCatalysisInorganic ChemistryOrganometallicsPolymerization