Soleimani, BehradDushyanthi Karunathilake, I. M.Das, ProloyKuchinsky, Stephanie E.Babadi, BehtashSimon, Jonathan E.One way to investigate the mechanisms that underlie speech comprehension under difficult listening conditions is via cortical connectivity. The innovative Network Localized Granger Causality (NLGC) framework was applied to magnetoencephalography (MEG) data, obtained from older and younger subjects performing a speech listening task in noisy conditions, in delta and theta frequency bands. Directional connectivity between frontal, temporal, and parietal lobes was analyzed. Both aging- and condition-related changes were found, particularly in theta. In younger adults, as background noise increased, there was a transition from predominantly temporal-to-frontal (bottom-up) connections, to predominantly frontal-to-temporal (top-down). In contrast, older adults showed bidirectional information flow between frontal and temporal cortices even for speech in quiet, not changing substantially with increased noise. Additionally, younger listeners did not show changes in the nature of their cortical links for different listening conditions, whereas older listeners exhibited a switch from predominantly facilitative links to predominantly sharpening, when noise increased.en-USChanges in Cortical Directional Connectivity during Difficult Listening in Younger and Older AdultsArticle