Schulenburg, Alison NicoleRising sea levels, storms, and perigean spring tides push saltwater into coastal agricultural fields. This phenomenon, known as saltwater intrusion, alters nutrient cycling and damages crop yields. As sea levels continue to rise, saltwater intrusion will only worsen, with devastating consequences to agroecosystems along the coast of the Chesapeake Bay. Researchers and farmers alike are looking for solutions to adapt to and mitigate the effects of saltwater intrusion. Landowners may respond by altering their management practices. Farmers may 1) adapt by planting a salt-tolerant crop, 2) attempt to remediate soils with trap crops, 3) restore native marsh grasses, or 4) abandon fields altogether. My project investigates the survival of different crops and plant treatments under saltwater-intruded conditions and the potential for these plants to survive and to remove excess nutrients (e.g. sodium and phosphorus) from the soil, with the overall goal to benefit both the farming community and water quality in the Chesapeake Bay. Results from this study will help inform new management practices to increase soil health and maintain crop yields. Finally, the goal of this work is to guide local best management practices and potential easement opportunities for landowners facing saltwater intrusion, and ultimately determine optimal strategies for climate resilience.enMANAGEMENT OPTIONS FOR FARMERS FACING SALTWATER INTRUSION ON THE EASTERN SHORE OF THE CHESAPEAKE BAYThesisSoil sciencesAgricultureBiogeochemistryadaptationlegacy Pmanagement practicesremediationrestorationsaltwater intrusion