Shrestha, SneheshLearning a musical instrument is a complex process involving years of practice and feedback. However, dropout rates in music programs, particularly among violin students, remain high due to socio-economic barriers and the challenge of mastering the instrument. This work explores the feasibility of accelerating learning and leveraging technology in music education, with a focus on bowed string instruments, specifically the violin. My research identifies workflow gaps and challenges for the stakeholders, aiming to address not only the improvement of learning outcomes but also the provision of opportunities for socioeconomically challenged students. Three key areas are emphasized: designing user studies and creating a comprehensive violin dataset, developing tools and deep learning algorithms for accurate performance assessment, and crafting a practice platform for student feedback. Three fundamental perspectives were essential: a) understanding the stakeholders and their specific challenges, b) understanding how the instrument operates and what actions the player must master to control its functions, and c) addressing the technical challenges associated with constructing and implementing detection and feedback systems. The existing datasets were inadequate for analyzing violin playing, primarily due to their lack of diversity of body types and skill levels, as well as the absence of well-synchronized and calibrated video data, along with corresponding ground truth 3D poses and musical events. Our experiment design was ensured that the collected data would be suitable for subsequent tasks downstream. These considerations played a significant role in determining the metrics used to evaluate the accuracy of the data and the success metrics for the subsequent tasks. At the foundation of movement analysis lies 3D human pose estimation. Unfortunately, the current state-of-the-art algorithms face challenges in accurately estimating monocular 3D poses during instrument playing. These challenges arise from factors such as occlusions, partial views, human-object interactions, limited viewing angles, pixel density, and camera sampling rates. To address these issues, we developed a novel 3D pose estimation algorithm based on the insight that the music produced by the violin is a direct result of the corresponding motions. Our algorithm integrates visual observations with audio inputs to generate precise, high-resolution 3D pose estimates that are temporally consistent and conducive to downstream tasks. Providing effective feedback to learners is a nuanced process that requires balancing encouragement with challenge. Without a user-friendly interface and a motivational strategy, feedback runs the risk of being counterproductive. While current systems excel at detecting pitch and temporal misalignments and visually displaying them for analysis, they often overwhelm players. In this dissertation, we introduce two novel feedback systems. The first is a visual-haptic feedback system that overlays simple augmented cues on the user's body, gently guiding them back to the correct posture. The second is a haptic band synchronized with the music, enhancing students' perception of rhythmic timing and bowing intensities. Additionally, we developed an intuitive user interface for real-time feedback during practice sessions and performance reviews. This data can be shared with teachers for deeper insights into students' struggles and track progress. This research aims to empower both students and teachers. By providing students with feedback during individual practice sessions and equipping teachers with tools to monitor and tailor AI interventions according to their preferences, this work serves as a valuable teaching assistant. By addressing tasks that teachers may not prefer or physically perform, such as personalized feedback and progress tracking, this research endeavors to democratize access to high-quality music education and mitigate dropout rates in music programs.enAI Empowered Music EducationDissertationArtificial intelligenceMusic educationAIfeedbackmultimodalmusicperceptionviolin