Hocking, Erica GraceMotivated by the excellent actuator characteristics of pneumatic artificial muscles (PAMs), two novel actuators based on this technology were developed for applications where traditional PAMs are not suitable. The first of these actuators is a miniature PAM that possesses the same operating principle as a full-scale contractile PAM, but with a diameter an order of magnitude smaller. The second actuator, a push-PAM, harnesses the operational characteristics of a contractile PAM, but changes the direction of motion and force with a simple conversion package. Testing on these actuators revealed each PAM's evolution of force with displacement for a range of operating pressures. To address the analysis of the nonlinear response of these PAMs, a nonlinear stress vs. strain model, a hysteresis model, and a pressure deadband were introduced into a previously developed force balance analysis. The refined nonlinear model was shown to reconstruct PAM response with higher accuracy than previously possible.Analysis of Nonlinear Behavior in Novel Pneumatic Artificial MusclesThesisAerospace engineeringblocked forcefree contractionhysteresisnonlinear elastic analysispneumatic artificial musclepressure deadband