Yuruker, Sevket UmutOn-chip thermoelectric cooling is a promising solution for thermal management of next generation integrated circuits. This thesis focuses on three thermoelectric cooling applications for high flux electronics. A micro contact enhanced thin film thermoelectric cooler was designed for remediation of a 5kW/cm2 hotspot and its integration with manifold microchannel system is numerically demonstrated. In addition, thermoelectric cooling was utilized for thermal de-coupling of electronic chips with different operating temperatures, eliminating the need to over-cool the entire package. Furthermore, effect of decreasing contact resistances in thin film thermoelectrics was numerically investigated to effectively remove 100W (~280W/cm2) of heat dissipation from quantum cascade lasers. Finally, a system-level optimization methodology is established with comprehensive mathematical modeling, verified with numerical simulations. Master curves are generated to understand the effect of system-level parasitics on performance and optimal design variables. In conclusion, the advantages of thermoelectric cooling for high flux electronics is demonstrated in this thesis.enTHERMOELECTRIC COOLING OF HIGH FLUX ELECTRONICSThesisMechanical engineeringHigh Flux ElectronicsHotspot CoolingMicro-channel CoolingOptimizationThermal ManagementThermoelectric Cooling