Margetis, DionisiosWatson, Alexander B.Luskin, MitchellWe describe the low-temperature optical conductivity as a function of frequency for a quantum-mechanical system of electrons that hop along a polymer chain. To this end, we invoke the Su–Schrieffer–Heeger tight-binding Hamiltonian for noninteracting spinless electrons on a one-dimensional (1D) lattice. Our goal is to show via asymptotics how the interband conductivity of this system behaves as the smallest energy bandgap tends to close. Our analytical approach includes: (i) the Kubo-type formulation for the optical conductivity with a nonzero damping due to microscopic collisions, (ii) reduction of this formulation to a 1D momentum integral over the Brillouin zone, and (iii) evaluation of this integral in terms of elementary functions via the three-dimensional Mellin transform with respect to key physical parameters and subsequent inversion in a region of the respective complex space. Our approach reveals an intimate connection of the behavior of the conductivity to particular singularities of its Mellin transform. The analytical results are found in good agreement with direct numerical computations.en-USinterband conductivityKubo formulaMellin transformSu-Schrieffer-Heeger modeltight-binding Hamiltoniantopological insulatorOn the Su–Schrieffer–Heeger model of electron transport: Low-temperature optical conductivity by the Mellin transformArticle