Yang, HuBurgdorf, MartinAs a potential external calibration reference for spaceborne microwave sounding instruments, accurate and reliable information of lunar disk-averaged radiance at millimeter band are important and fundamental. Based on study for 2-D lunar scans of the Advanced Technology Microwave Sounder (ATMS) on board the NOAA-20 satellite, the lunar radiance spectrum from 23 to 183 GHz at full moon phase has been reported in our previous work. In this study, the performance of a lunar microwave radiative transfer model (RTM) developed by Keihm was investigated (cited as Keihm model in this paper) . By taking the ATMS observations as the reference truth, the surface emissivity in the lunar RTM can be calibrated. The calibrated RTM model was then evaluated by independent satellite observation data sets from AMSU (Advanced Microwave Sounding Unit) and MHS (Microwave Humidity Sounder) instruments on several NOAA satellites. Results show that with the calibrated model, significant improvement can be made to reduce the uncertainties in the lunar microwave RTM simulations at millimeter wavelengths.en-USradiative transfer modellunar microwave brightness temperaturecalibrationA Calibrated Lunar Microwave Radiative Transfer Model Based on Satellite ObservationsArticle