Leonard, MatthewOrganophosphorus molecules are a wide class of compounds that are used commerciallyas fire retardants, plasticizers, and pesticides. Organophosphorus pesticides were developed to replace environmentally persistent pesticides, such as dichlorodiphenyltrichloroethane, more commonly known as DDT. However, organophosphorus pesticides have been proven to be carcinogenic and to affect neurodevelopment negatively. A sub-class of organophosphorus molecules are highly toxic acetylcholinesterase (AChE) inhibitors, known as nerve agents. Although the Geneva convention banned the use of chemical warfare agents (CWA), the nerve agent sarin has been used as recently as 2013 on Syrian civilians. In 2018, a Novichok nerve agent was used in the attempted assassination of a former Russian spy and his daughter. Current CWA respiratory protection employs bituminous coal (BPL), carbon which is impregnated with a mixture known as ASZM-TEDA. BPL carbon impregnated with ASZM-TEDA has a wide range of reactivity, but has not changed significantly since its inception. The next-generation filtration material will need to have a large surface area to maximize reactive sites and be robust to withstand degradation. Mesoporous and nanoparticle metal oxides are highly active materials that show promise in nerve agent defeat. Within this dissertation, the goal is to develop and study reactive metal oxides to understand the factors that are important for the decomposition of CWAs and CWA simulants. In Chapter 1, I introduce the history of CWAs, the downfalls of current filtration technology, and the candidates for the next generation filter. In Chapter 2, the methods and characterization techniques used within this work are presented and discussed. In Chapter 3, to determine the effects of cation selection on methyl paraoxon decomposition, Ce4+ was isovalently doped into anatase type TiO2. Through UV/Vis spectroscopy, the degradation of methyl paraoxon was tracked and fit to pseudo-first-order kinetics, then normalized to the synthesized material’s surface area. The rate constant, normalized to the material’s surface area (kSA), reveals CeO2 is 3 to 4.6 times larger than that of TiO2 and the Ce-doped titanias. The Ce-doped titanias showed little to no change in methyl paraoxon decomposition compared to TiO2. The lack of change within the Ce-dopant titania revealed that crystal structure is a larger driving factor for methyl paraoxon decomposition than the cation identity (i.e. Ce4+ and Ti4+). Chapter 4 presents a study on the gas surface interaction between sarin and dry CuO nanoparticles (NP) through infrared (IR) spectroscopy. Sarin adsorbs to CuO through the P=O bond, and proceeds to decompose on the surface. Distinct red shifts in the delta(P-CH3) and rho(P-CH3) modes indicate the cleavage of the P-F bond, producing isopropyl methyl phosphonic acid (IMPA). Concurrently, a mode attributed to (O-P-O) begins to grow in, demonstrating that sarin forms a bridging species on the surface. Sarin continues to degrade on the dry CuO surface once the sarin feed is removed. Upon heating above 423 K, all modes associated with IMPA simultaneously decrease, indicating that IMPA desorbs from the surface. These observations were further corroborated through computational methods. Finally, in Chapter 5, I seek to enhance the reactivity of CuO by placing the cation Cu2+ within a Jahn-Teller active geometry. Mesoporous NiO and Cu-doped NiO were synthesized and exposed to diisopropyl fluorophosphate (DFP) in different environments and studied through diffuse reflectance IR Fourier transform spectroscopy (DRIFTS). Ordered mesoporous Cu-doped NiO was successfully synthesized through a hard templating method. Through X-ray diffraction (XRD), Cu2+ was incorporated into the NiO rock-salt lattice without phase separation for < 20%. The mesoporous metal oxides (MMO) maintained high surface areas (67.89-94.38 m2/g), with a main pore size of ~2.4 nm. Shifts in the Raman spectra indicate the dopant, Cu2+, reduces nickel vacancies resulting in a decrease in Ni3+ defect states. Upon DFP exposure, NiO was highly oxidative producing CO, CO2, carbonyls, and carbonates due to the active oxygen species formed by the Ni2+ vacancies. The mesoporous Cu-doped NiO samples were less reactive to DFP oxidation, due to the Cu2+ occupying the nickel vacancies, resulting in a reduction of active oxygen species.enA Breath of Fresh Air: Study of Reactive Porous Metal Oxides for Chemical Warfare Agent and Simulant DefeatDissertationMaterials ScienceInorganic chemistryPhysical chemistry