Colston, Helen MarieThis paper examines local cross sections of a continuous flow on a locally compact metric space. Sane of the history of the study of local cross sections is reviewed, with particular attention given to H. Whitney's work. The paper presents a modern proof that local cross sections always exist at noncritical points of a flow. Whitney is the primary source for the key idea in the existence proof; he also gave characterizations of local cross sections on 2- and 3-dimensional manifolds. We show various topological properties of local cross sections, the most important one being that local cross sections on the same orbit are locally homeomorphic. A new elementary proof using the Jordan Curve Theorem shows that when a flow is given on a 2-manifold, a local cross section will be an arc. Whitney is cited for a similar result on 3-maniforlds. Finally, the so-called "dob=bone" space of R. Bing is used to construct a flow on a 4-manifold with a point at which every local cross section is not homeomorphic to a 3-dimensional disk.en-USA Modern Overview of Local Sections of FlowsThesis