Dittmann, Alexander JosephEnormous disks of gas are thought to feed the supermassive black holes at the centers of active galaxies; these disks may capture stars from nuclear clusters, or form stars in situ after collapsing under their own gravity. Such stellar populations may enrich these accretion disks with fusion byproducts, cause giant flares in these active galaxies, and leave behind compact remnants detected on earth through gravitational waves emitted as they merge with one another. This dissertation charts a theoretical expedition into these phenomena, from studying the implications of star-forming accretion disks for the growth of black holes in the early universe, to simulating the flow of gas around black hole binaries to ascertain their orbital evolution. After a brief observational and theoretical overview of stars and active galactic nuclei, this dissertation delves into the development of simplified models of accretion disk structure, including the effects of stars and black holes embedded within accretion disks. The ultimate goal of this chapter was to determine if gravitational instability in the outer regions of these accretion disks might lead to the formation of large numbers of black holes, which might go on to merge with the central supermassive black hole; this process might decrease the effective radiative efficiency of accretion onto supermassive black holes, facilitating the rapid growth of black holes in the early universe, which defies conventional explanation. Along the way, this work developed a new flavor of model to describe these disks, accounting for the pressure support provided by feedback from disk-embedded stellar-mass black holes, developed a number of semi-analytical estimates for how stars might evolve within these accretion disks, and estimated the typical timescales for objects to move through the disk. Together, these estimates showed that accelerated supermassive growth in the early universe was indeed feasible, although this estimate hinged on a number of yet-untested assumptions. Subsequently, this dissertation advances to the question of how stars evolve when embedded within hot, dense disks of gas accreting onto supermassive black holes. Moving beyond the semi-analytical models of the preceding section, the third chapter reviews simulations of stellar evolution subject to the extreme conditions within these accretion disks. Stellar evolution calculations, due to the enormous spatial and time-scales involved, are virtually always restricted to one spatial dimension. This chapter investigates a number of the ways to account for the deviations in spherical symmetry inherent to accretion disks in these calculations, before reviewing how stellar rotation and the chemical composition of these accretion disks can affect the evolution of stars embedded therein. This work developed analytical criteria governing different regimes in stellar evolution, such as the balance between the stellar accretion and nuclear burning timescales, the relationship between gas composition and gas opacity, and the limiting effect of the central supermassive black hole's gravity on stellar accretion as the two compete for gravitational influence on the gas within the disk. Ultimately, the precise, quantitative details of these simulations depend on the specific 3D-inspired prescriptions implemented, but the overall trends identified are robust. The final study presented in this dissertation investigates the feasibility of these accretion disks as the host sites for the stellar-mass black hole mergers detected by the Laser Interferometer Gravitational-Wave Observatory. One of the primary uncertainties of this scenario is whether binaries formed within the disk will tend to spiral inward after formation, or instead be driven via hydrodynamic interactions to spiral outward to the point where chaotic three-body interactions would separate the binary. To address the feasibility of this gravitational wave progenation channel, we conducted three-dimensional hydrodynamical simulations of black hole binaries embedded within these accretion disks, at orbital separations slightly smaller than the limit for dynamical instability. This chapter focused on initially circular binaries over a range of orbital inclinations with respect to the midplane of the disk, finding that binaries with orbits at all misaligned with the disk midplane are gradually realigned, and that retrograde binaries can inspiral appreciably faster than prograde ones. Although the simulations were physically incomplete, in particular neglecting magnetohydrodynamic and radiative effects, they suggest that AGN disks could indeed host the binary black hole mergers detected via gravitational waves.enThe Lives and Times of Stars and Black Holes in the Disks of Active Galactic NucleiDissertationAstrophysicsAstronomyComputational physics