Horn, T.Aniol, K.Arrington, J.Barrett, B.Beise, E.J.Blok, H.P.Boeglin, W.Brash, E.J.Breuer, H.Chang, C.C.Christy, M.E.Ent, R.Gaskell, D.Gibson, E.Holt, R.J.Huber, G.M.Jin, S.Jones, M.K.Keppel, C.E.Kim, W.King, P.M.Kovaltchouk, V.Liu, J.Lolos, G.J.Mack, D.J.Margaziotis, D.J.Markowitz, P.Matsumura, A.Meekins, D.Miyoshi, T.Mkrtchyan, H.Niculescu, I.Okayasu, Y.Pentchev, L.Perdrisat, C.Potterveld, D.Punjabi, V.Reimer, P.Reinhold, J.Roche, J.Roos, P.G.Sarty, A.Smith, G.R.Tadevosyan, V.Tang, L.G.Tvaskis, V.Vidakovic, S.Volmer, J.Vulcan, W.Warren, G.Wood, S.A.Xu, C.Zheng, X.The Jefferson Lab Fπ-2 CollaborationThe 1H(e,e′π+)n cross section was measured at four-momentum transfers of Q2=1.60 and 2.45 GeV2 at an invariant mass of the photon nucleon system of W =2.22 GeV. The charged pion form factor (Fπ) was extracted from the data by comparing the separated longitudinal pion electropro- duction cross section to a Regge model prediction in which Fπ is a free parameter. The results indicate that the pion form factor deviates from the charge-radius constrained monopole form at these values of Q2 by one sigma, but is still far from its perturbative Quantum Chromo-Dynamics prediction.PhysicsPionDetermination of the Charged Pion Form Factor at Q2=1.60 and 2.45 (GeV/c)2Article