Sosnova, KseniaQuantum computing promises solutions to some of the world's most important problems that classical computers have failed to address. The trapped-ion-based quantum computing platform has a lot of advantages for doing so: ions are perfectly identical and near-perfectly isolated, feature long coherent times, and allow high-fidelity individual laser-controlled operations. One of the greatest remaining obstacles in trapped-ion-based quantum computing is the issue of scalability. The approach that we take to address this issue is a modular architecture: separate ion traps, each with a manageable number of ions, are interconnected via photonic links. To avoid photon-generated crosstalk between qubits and utilize advantages of different kinds of ions for each role, we use two distinct species - ¹⁷¹Yb⁺ as memory qubits and ¹³⁸Ba⁺ as communication qubits. The qubits based on ¹⁷¹Yb⁺ are defined within the hyperfine "clock" states characterized by a very long coherence time while ¹³⁸Ba⁺ ions feature visible-range wavelength emission lines. Current optical and fiber technologies are more efficient in this range than at shorter wavelengths. We present a theoretical description and experimental demonstration of the key elements of a quantum network based on the mixed-species paradigm. The first one is entanglement between an atomic qubit and the polarization degree of freedom of a pure single photon. We observe a value of the second-order correlation function g⁽²⁾(0) = (8.1 ± 2.3)⨉10⁻⁵ without background subtraction, which is consistent with the lowest reported value in any system. Next, we show mixed-species entangling gates with two ions using the Mølmer-Sørensen and Cirac-Zoller protocols. Finally, we theoretically generalize mixed-species entangling gates to long ion chains and characterize the roles of normal modes there. In addition, we explore sympathetic cooling efficiency in such mixed-species crystals. Besides these developments, we demonstrate new techniques for manipulating states within the D₃⸝₂-manifold of zero-nuclear-spin ions - a part of a protected qubit scheme promising seconds-long coherence times proposed by Aharon et al. in 2013. As a next step, we provide a detailed description of the protocols for three- and four-node networks with mixed species, along with a novel design for the third trap with in-vacuum optics to optimize light collection.enMixed-Species Ion Chains for Quantum NetworksDissertationQuantum physicsAtomic physicsPhysicsIon trapsIon-Photon entanglementModular quantum architectureQuantum computingQuantum informationQuantum networks