Kibey, Sameer AvinashIn this Thesis, we focus on problems in surveillance video analysis and propose advanced metadata modeling techniques to address them. First, we explore the problem of constructing a snapshot summary of people in a video sequence. We propose an algorithm based on the eigen-analysis of faces and present an evaluation of the method. Second, we present an algorithm to learn occlusion points in a scene using long observations of moving objects, provide an implementation and evaluate its performance. Third, to address the problem of availability and storage of surveillance videos, we propose a novel methodology to simulate video metadata. The technique is completely automated and can generate metadata for any scenario with minimal user interaction. Finally, a threat detection model using activity analysis and trajectory data of moving objects is proposed and implemented. The collection of tools presented in this Thesis provides a basis for higher level video analysis algorithms.en-USTools for Advanced Video Metadata ModelingThesisEngineering, Electronics and Electrical