Singam, CaitlynCommunication networks are prone to disruption due to inherent uncertainties such as environmental conditions, system outages, and other factors. However, current state-of-the-art communication protocols are not yet optimized for communication in highly disruption-prone environments, such as deep space, where the risk of such uncertainties is not negligible. This work involves the development of a novel protocol for disruption-tolerant communication across space-based networks that avoids idealized assumptions and is consistent with system limitations. The proposed solution is grounded in an approach to information as a time-based commodity, and on reframing the problem of efficient signal routing as a problem of value optimization. The efficacy of the novel protocol was evaluated via a custom Monte Carlo simulation against other state-of-the-art protocols in terms of maintaining both data integrity and transmission speed, and was found to provide a consistent advantage across both metrics of interest.enOptimization of Signal Routing in Disruption-Tolerant NetworksThesisSystems scienceAerospace engineeringElectrical engineeringDTNnetworkoptimizationroutingsatellitespace systems