McCoy, Emily LimBioenergy generation and volatile fatty acids (VFAs) production from household food waste and high salinity food processing waste were explored using anaerobic digestion and dark fermentation processes, respectively. This study tested adding value to three organic waste streams: household food waste, high salinity food processing waste (composed of glycerin sludge from biodiesel production), and residual solids from VFAs separation after dark fermentation of food waste. The investigations were conducted using batch and semi-continuous systems in mesophilic conditions (35°C). Methane (CH4) potential tests were conducted to determine the bioenergy production of food waste and residual solids, including the addition of dark fermentation gas at four ratios of hydrogen (H2) to carbon dioxide (CO2) (1:1, 1:2, 1:3, 1:5) into the liquid portion of the reactor to enhance CH4 production and three inoculum to substrate ratios (1.5:1, 2:1, 4:1). Additionally, a semi-continuous dark fermentation study was used to determine the VFA production from household food waste and high salinity food processing waste combinations over 62 days. The anaerobic digestion of residual solids from VFAs separation had similar bioenergy potential as household food waste when normalized by volatile solids (VS) added (492 ± 11 mL CH4/g VS and 470 ± 11 mL CH4/g VS, respectively). Dark fermentation gas added into the liquid portion of the reactor during anaerobic digestion decreased CH4 yields, especially at low H2:CO2 ratios, suggesting that only dark fermentation reactors that produce high H2:CO2 ratios should have the gas sparged into anaerobic digestion systems. When the residual solids from dark fermentation were fermented at three inoculum to substrate ratios (1.5:1, 2:1, 4:1), the lowest inoculum to substrate ratio (1.5:1) had the highest VFAs concentration (28.05 ± 0.89 g/L) after nine days of fermentation, which showed that residual solids can be fermented with low inoculum levels, allowing more room for substrate fermentation. Additionally, the mono- and co-fermentation of household food waste and high salinity food processing waste showed that the high salinity waste improved VFA production due to the high pH (9 – 10) and high organic loading (6.3 – 17.8 g VS/L-day), even with high salinity levels (21.4 – 85.6 g/L Na) in this waste. There was significantly higher VFA production in high salinity food processing waste (36.04 ± 0.54 g/L) compared to household food waste (9.29 ± 1.01 g/L). The maximum VFA concentration (36.04 ± 0.54 g/L) was achieved after 51 days of high salinity food processing waste semi-continuous fermentation. The findings in this study can be used to improve operations of anaerobic digestion and dark fermentation systems by using residual solids for bioenergy generation or VFA production. The testing of mono- and co-fermentation of household food waste and high salinity food processing waste showed high VFA production in fermenting high salinity food processing waste. This work showed the valorization of three organic waste streams through bioconversion to both bioenergy and high-value products (VFAs), which redirected these waste products from municipal solids landfills and into resources, thereby reducing CH4 released into the atmosphere from landfills and reducing global warming potential.enGENERATING BIOENERGY AND HIGH-VALUE PRODUCTS FROM HIGH SALINITY FOOD WASTEThesisEnvironmental scienceBioengineeringAnaerobic DigestionBioenergyDark FermentationFood WasteHigh Salinity Food WasteVolatile Fatty Acids