Quantification of Impact of Orbital Drift on Inter-Annual Trends in AVHRR NDVI Data
Files
Publication or External Link
Date
Advisor
Citation
Abstract
The Normalized Difference Vegetation Index (NDVI) time-series data derived from Advanced Very High Resolution Radiometer (AVHRR) have been extensively used for studying inter-annual dynamics of global and regional vegetation. However, there can be significant uncertainties in the data due to incomplete atmospheric correction and orbital drift of the satellites through their active life. Access to location specific quantification of uncertainty is crucial for appropriate evaluation of the trends and anomalies. This paper provides per pixel quantification of orbital drift related spurious trends in Long Term Data Record (LTDR) AVHRR NDVI data product. The magnitude and direction of the spurious trends was estimated by direct comparison with data from MODerate resolution Imaging Spectrometer (MODIS) Aqua instrument, which has stable inter-annual sun-sensor geometry. The maps show presence of both positive as well as negative spurious trends in the data. After application of the BRDF correction, an overall decrease in positive trends and an increase in number of pixels with negative spurious trends were observed. The mean global spurious inter-annual NDVI trend before and after BRDF correction was 0.0016 and −0.0017 respectively. The research presented in this paper gives valuable insight into the magnitude of orbital drift related trends in the AVHRR NDVI data as well as the degree to which it is being rectified by the MODIS BRDF correction algorithm used by the LTDR processing stream.