Show simple item record

Metastability in Nearly-Hamiltonian Systems

dc.contributor.advisorFreidlin, Mark Ien_US
dc.contributor.authorAthreya, Dwijavantien_US
dc.date.accessioned2009-10-06T05:50:16Z
dc.date.available2009-10-06T05:50:16Z
dc.date.issued2009en_US
dc.identifier.urihttp://hdl.handle.net/1903/9505
dc.description.abstractWe characterize the phenomenon of metastability for a small random perturbation of a nearly-Hamiltonian dynamical system with one degree of freedom. We use the averaging principle and the theory of large deviations to prove that a metastable state is, in general, not a single state but rather a nondegenerate probability measure across the stable equilibrium points of the unperturbed Hamiltonian system. The set of all possible ``metastable distributions" is a finite set that is independent of the stochastic perturbation. These results lead to a generalization of metastability for systems close to Hamiltonian ones.en_US
dc.format.extent625705 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.titleMetastability in Nearly-Hamiltonian Systemsen_US
dc.typeDissertationen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.contributor.departmentApplied Mathematics and Scientific Computationen_US
dc.subject.pqcontrolledMathematicsen_US
dc.subject.pquncontrolledAveragingen_US
dc.subject.pquncontrolledLarge deviationsen_US
dc.subject.pquncontrolledMetastabilityen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record