Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Aerospace Engineering
    • Aerospace Engineering Research Works
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Aerospace Engineering
    • Aerospace Engineering Research Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Interconnection of Subsystem Reduced-Order Models in the Electro-Thermal Analysis of Large Systems

    Thumbnail
    View/Open
    Mathai_HeatROM.pdf (534.1Kb)
    No. of downloads: 514

    Date
    2007-06
    Author
    Shapiro, Benjamin
    Mathai, Pramod
    Citation
    P.Mathai, B.Shapiro. Interconnection of Subsystem Reduced-Order Models in the Electrothermal Analysis of Large Systems. Components and Packaging Technologies, IEEE Transactions on [see also Components, Packaging and Manufacturing Technology, Part A: Packaging Technologies, IEEE Transactions on] Volume 30, Issue 2, June 2007 Page(s):317 - 329
    Metadata
    Show full item record
    Abstract
    Heat conduction in an electronic device is commonly modeled as a discretized thermal system (eg, finite element or finite difference models) that typically uses large matrices for solving complex problems. The large size of electronic-system heat transfer models can be reduced using model reduction methods and the resulting reduced-order models can yield accurate results with far less computational costs. Electronic devices are typically composed of components, like chips, printed circuit boards, and heat sinks that are coupled together. There are two ways of creating reduced-order models for devices that have many coupled components. The first way is to create a single reduced-order model of the entire device. The second way is to interconnect reduced-order models of the components that constitute the device. The second choice (which we call the “reduce then interconnect” approach) allows the heat transfer specialist to perform quick simulations of different architectures of the device by using a library of reduced-order models of the different components that make up the device. However, interconnecting reduced-order models in a straightforward manner can result in unstable behavior. The purpose of this paper is two-fold: creating reduced-order models of the components using a Krylov subspace algorithm and interconnecting the reducedorder models in a stable manner using concepts from control theory. In this paper we explain the logic behind the “reduce then interconnect” approach, formulate a control-theoretic method for it, and finally exhibit the whole process numerically, by applying it to an example heat conduction problem.
    URI
    http://hdl.handle.net/1903/9434
    Collections
    • Aerospace Engineering Research Works
    Rights
    Copyright © [2007] IEEE. Reprinted from IEEE TRANSACTIONS ON COMPONENTS, PACKAGING, AND MANUFACTURING TECHNOLOGY This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Maryland 's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility