Show simple item record

On the Model Theory of Random Graphs

dc.contributor.advisorLaskowski, Michael Cen_US
dc.contributor.authorBrody, Justin D.en_US
dc.date.accessioned2009-07-03T05:30:52Z
dc.date.available2009-07-03T05:30:52Z
dc.date.issued2009en_US
dc.identifier.urihttp://hdl.handle.net/1903/9291
dc.description.abstractHrushovski's amalgamation construction can be used to join a collection of finite graphs to produce a ``generic'' of this collection. The choice of the collection and the way they are joined are determined by a real-valued parameter α. Classical results have shown that for α irrational in (0,1), the model theory of the resulting structure is very well-behaved. This dissertation examines analogous constructions for rational "r." Depending on the way in which the parameter's control of the construction is defined, the model theory of the resulting generic will be either very well-behaved or very wild. We characterize when each of these situations occurs.en_US
dc.format.extent939210 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.titleOn the Model Theory of Random Graphsen_US
dc.typeDissertationen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.contributor.departmentMathematicsen_US
dc.subject.pqcontrolledMathematicsen_US
dc.subject.pquncontrolled0-1 lawsen_US
dc.subject.pquncontrolledhrushovski constructionen_US
dc.subject.pquncontrolledmodel theoryen_US
dc.subject.pquncontrolledrandom graphen_US
dc.subject.pquncontrolledshelah-spencer graphen_US
dc.subject.pquncontrolledundecidabilityen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record