Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports from UMIACS
    • View Item
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports from UMIACS
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    On an Inexpensive Triangular Approximation to the Singular Value Decomposition

    Thumbnail
    View/Open
    CS-TR-3840.ps (215.7Kb)
    No. of downloads: 298

    Auto-generated copy of CS-TR-3840.ps (210.5Kb)
    No. of downloads: 846

    Date
    1998-10-15
    Author
    Stewart, G. W.
    Metadata
    Show full item record
    Abstract
    In this paper we introduce a new decomposition called the pivoted QLP~decomposition. It is computed by applying pivoted orthogonal triangularization to the columns of the matrix $X$ in question to get an upper triangular factor $R$ and then applying the same procedure to the rows of $R$ to get a lower triangular matrix $L$. The diagonal elements of $R$ are called the R-values of $X$; those of $L$ are called the L-values. Numerical examples show that the L-values track the singular values of $X$ with considerable fidelity\,---\,far better than the R-values. At a gap in the L-values the decomposition provides orthonormal bases of analogues of row, column, and null spaces provided of $X$. The decomposition requires no more than twice the work required for a pivoted QR~decomposition. The computation of $R$ and $L$ can be interleaved, so that the computation can be the rows of $R$ to get a lower triangular matrix $L$. The diagonal elements of $R$ are called the R-values of $X$; those of $L$ are called the L-values. Numerical examples show that the L-values track the singular values of $X$ with considerable fidelity\,---\,far better than the R-values. At a gap in the L-values the decomposition provides orthonormal bases of analogues of row, column, and null spaces provided of $X$. The decomposition requires no more than twice the work required for a pivoted QR~decomposition. The computation of $R$ and $L$ can be interleaved, so that the computation can be terminated at any suitable point, which makes the decomposition especially suitable for low-rank determination problems. The interleaved algorithm also suggests a new, efficient 2-norm estimator. (Also cross-referenced as UMIACS-TR-97-75)
    URI
    http://hdl.handle.net/1903/920
    Collections
    • Technical Reports from UMIACS
    • Technical Reports of the Computer Science Department

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility