SEASONAL AND INTERANNUAL VARIABILITY OF EMISSIONS FROM CROP RESIDUE BURNING IN THE CONTIGUOUS UNITED STATES

Loading...
Thumbnail Image

Files

Publication or External Link

Date

2009

Citation

DRUM DOI

Abstract

Crop residue burning is a global agricultural practice used to remove excess residues before or after harvest. Crop residue burning in the contiguous United States (CONUS) has been documented at the regional and state-level by governmental organizations and in the scientific literature. Emissions from crop residue burning in the CONUS have been found to impair local and regional air quality, leading to serious health impacts and legal disputes. Currently, there is no baseline estimate for the area and emissions of crop residue burning in the CONUS. A bottom-up model for emissions calculations is employed to calculate CO2, CO, CH4, NO2, SO2, PM2.5, PM10, and Pb emissions from crop residue burning in the CONUS for the years 2003 through 2007. These atmospheric species have negative impacts on air quality and human health and are important to the carbon cycle. Spatially and temporally explicit cropland burned area and crop type products for the CONUS, necessary for emissions calculations, are developed using remote sensing approaches. The majority of crop residue burning and emissions in the CONUS are shown to occur during the spring (April - June) and fall harvests (October - December). On average, 1,239,000 ha of croplands burn annually in the CONUS with an average interannual variability of ± 91,200 ha. In general, CONUS crop residue burning emissions vary less than ±10% interannually. The states of Arkansas, California, Florida, Idaho, Texas, and Washington emit 50% of PM10, 51% of CO2, 52% of CO, and 63% of PM2.5 from all crop residue burning in the CONUS. Florida alone emits 17% of all annual CO2, CO, and PM2.5 emissions and 12% of annual PM10 emissions from crop residue burning. Crop residue burning emissions in the CONUS account for as little as 1% of global agricultural emissions and as much as 15% of all agricultural burning emissions estimates in North America, including Mexico and Canada. The results have implications for international, federal, and state-level reporting and monitoring of air quality and greenhouse gas and carbon emissions aimed at protecting human health, mitigating climate change, and understanding the carbon cycle.

Notes

Rights