Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Gaussian Process Regression for Model Estimation

    Thumbnail
    View/Open
    Srinivasan_umd_0117N_10004.pdf (327.6Kb)
    No. of downloads: 1175

    Date
    2008
    Author
    Srinivasan, Balaji Vasan
    Advisor
    Duraiswami, Ramani
    Metadata
    Show full item record
    Abstract
    State estimation techniques using Kalman filter and Particle filters are used in a number of applications like tracking, econometrics, weather data assimilation, etc. These techniques aim at estimating the state of the system using the system characteristics. System characteristics include the definition of system's dynamical model and the observation model. While the Kalman filter uses these models explicitly, particle filter based estimation techniques use these models as part of sampling and assigning weights to the particles. If the state transition and observation models are not available, an approximate model is used based on the knowledge of the system. However, if the system is a total black box, it is possible that the approximate models are not the correct representation of the system and hence will lead to poor estimation. This thesis proposes a method to deal with such situations by estimating the models and the states simultaneously. The thesis concentrates on estimating the system's dynamical model and the states, given the observation model and the noisy observations. A Gaussian process regression based method is developed for estimating the model. The regression method is sped up from O(N2) to O(N) using an data-dependent online approach for fast Gaussian summations. A relevance vector machine based data selection scheme is used to propagate the model over iterations. The proposed method is tested on a Local Ensemble Kalman Filter based estimation for the highly non-linear Lorenz-96 model.
    URI
    http://hdl.handle.net/1903/8962
    Collections
    • Electrical & Computer Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility