Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports from UMIACS
    • View Item
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports from UMIACS
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Self-Replicating Structures in a Cellular Automata Space

    Thumbnail
    View/Open
    CS-TR-3715.ps (14.17Mb)
    No. of downloads: 483

    Auto-generated copy of CS-TR-3715.ps (8.541Mb)
    No. of downloads: 922

    Date
    1998-10-15
    Author
    Chou, Hui-Hsien
    Metadata
    Show full item record
    Abstract
    Biological experience and intuition suggest that self-replication is an inherently complex phenomenon, and early cellular automata self-replication models developed by computer scientists and mathematicians supported that view. However, since von~Neumann's original work in the 1950's, the study of cellular automata models of self-replicating systems has progressively led to smaller and simpler systems. This thesis demonstrates for the first time that it is possible to create automatically self-replicating structures in cellular automata models rather than, as has been done in the past, to design them manually. These emergent self-replicating structures employ a General Purpose Self-Replicating cellular automata rule set which can support the replication of structures of different sizes and their growth from smaller to larger ones. This thesis also demonstrates that, by letting self-replicating structures carry additional information besides replication instructions, they can be used to solve computationally hard problems such as the Satisfiability (SAT) problem. It is shown that self-replicating structures can be made to carry characteristic codes and selection forces can be implemented in cellular automata space. This study opens the door to further studies that could lead to general, solution-evolvable structures and truly self-programming systems. (Also cross-referenced as UMIACS-TR-96-85)
    URI
    http://hdl.handle.net/1903/859
    Collections
    • Technical Reports from UMIACS
    • Technical Reports of the Computer Science Department

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility