Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports from UMIACS
    • View Item
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports from UMIACS
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stabbing Orthogonal Objects in 3-Space

    Thumbnail
    View/Open
    CS-TR-3701.ps (652.4Kb)
    No. of downloads: 257

    Auto-generated copy of CS-TR-3701.ps (221.2Kb)
    No. of downloads: 573

    Date
    1998-10-15
    Author
    Mount, David M.
    Pu, Fan-Tao
    Metadata
    Show full item record
    Abstract
    We consider a problem that arises in the design of data structures for answering {\em visibility range queries}, that is, given a $3$-dimensional scene defined by a set of polygonal patches, we wish to preprocess the scene to answer queries involving the set of patches of the scene that are visible from a given range of points over a given range of viewing directions. These data structures recursively subdivide space into cells until some criterion is satisfied. One of the important problems that arise in the construction of such data structures is that of determining whether a cell represents a nonempty region of space, and more generally computing the size of a cell. In this paper we introduce a measure of the {\em size} of the subset of lines in 3-space that stab a given set of $n$ polygonal patches, based on the maximum angle and distance between any two lines in the set. Although the best known algorithm for computing this size measure runs in $O(n^2)$ time, we show that if the polygonal patches are orthogonal rectangles, then this measure can be approximated to within a constant factor in $O(n)$ time. (Also cross-referenced as UMIACS-TR-96-71)
    URI
    http://hdl.handle.net/1903/850
    Collections
    • Technical Reports from UMIACS
    • Technical Reports of the Computer Science Department

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility