Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Memory-related cognitive modulation of human auditory cortex: Magnetoencephalography-based validation of a computational model

    Thumbnail
    View/Open
    umi-umd-5225.pdf (7.851Mb)
    No. of downloads: 1337

    Date
    2008-04-09
    Author
    Rong, Feng
    Advisor
    Contreras-Vidal, José L
    Metadata
    Show full item record
    Abstract
    It is well known that cognitive functions exert task-specific modulation of the response properties of human auditory cortex. However, the underlying neuronal mechanisms are not well understood yet. In this dissertation I present a novel approach for integrating 'bottom-up' (neural network modeling) and 'top-down' (experiment) methods to study the dynamics of cortical circuits correlated to shortterm memory (STM) processing that underlie the task-specific modulation of human auditory perception during performance of the delayed-match-to-sample (DMS) task. The experimental approach measures high-density magnetoencephalography (MEG) signals from human participants to investigate the modulation of human auditory evoked responses (AER) induced by the overt processing of auditory STM during task performance. To accomplish this goal, a new signal processing method based on independent component analysis (ICA) was developed for removing artifact contamination in the MEG recordings and investigating the functional neural circuits underlying the task-specific modulation of human AER. The computational approach uses a large-scale neural network model based on the electrophysiological knowledge of the involved brain regions to simulate system-level neural dynamics related to auditory object processing and performance of the corresponding tasks. Moreover, synthetic MEG and functional magnetic resonance imaging (fMRI) signals were simulated with forward models and compared to current and previous experimental findings. Consistently, both simulation and experimental results demonstrate a DMSspecific suppressive modulation of the AER and corresponding increased connectivity between the temporal auditory and frontal cognitive regions. Overall, the integrated approach illustrates how biologically-plausible neural network models of the brain can increase our understanding of brain mechanisms and their computations at multiple levels from sensory input to behavioral output with the intermediate steps defined.
    URI
    http://hdl.handle.net/1903/8064
    Collections
    • Biology Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility