Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Electrical & Computer Engineering
    • Electrical & Computer Engineering Theses and Dissertations
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Electrical & Computer Engineering
    • Electrical & Computer Engineering Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    ON ROUTING AND PERFORMANCE EVALUATION OF BUFFERED SPARSE CROSSBAR CONCENTRATORS

    Thumbnail
    View/Open
    thesis.pdf (1.136Mb)
    No. of downloads: 814

    Date
    2002-12-10
    Author
    Ratan, Rahul
    Advisor
    Oruc, A. Yavuz
    Metadata
    Show full item record
    Abstract
    We investigate the routing and performance of sparse crossbar packet concentrators under a buffered network model. The concentration property in packet switching concentrators is defined with respect to packets instead of input/output ports. This allows such concentrators to function as generalized connectors (with some constraints). This altered functionality for a packet concentrator over its circuit switched counterpart translates into differences in performance measures like complexity and delay. A model for constructing sparse crossbar packet switching concentrators with optimal cross point complexity has been introduced in literature. We use this construction to model the performance of a sparse crossbar packet concentrator and relate performance measures to its complexity, connectivity and buffer requirements. In this thesis, we address issues of routing and performance evaluation over such optimal sparse crossbar fabrics, in particular their relation to complexity and buffer requirements. We present an analysis of the packet loss suffered in such concentrators when excess packets are dropped. We go on to analyze the best performance possible when packets are stored and serviced in FIFO order. These results lead us to formulate a routing algorithm which tries to emulate the best case performance on the sparse crossbar. We present theoretical and simulation results for the best case performance and the algorithm. We find that the algorithm is efficient and allows concentration to be done with negligible loss of performance on the sparse crossbar.
    URI
    http://hdl.handle.net/1903/7552
    Collections
    • Electrical & Computer Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility