Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports of the Computer Science Department
    • View Item
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports of the Computer Science Department
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Convergence Analysis of Iterative Solvers in Inexact Rayleigh Quotient Iteration

    Thumbnail
    View/Open
    rqi_minres_tr.pdf (322.8Kb)
    No. of downloads: 881

    Date
    2008-01
    Author
    Xue, Fei
    Elman, Howard C.
    Metadata
    Show full item record
    Abstract
    We present a detailed convergence analysis of preconditioned MINRES for approximately solving the linear systems that arise when Rayleigh Quotient Iteration is used to compute the lowest eigenpair of a symmetric positive definite matrix. We provide insight into the ``slow start'' of MINRES iteration in both a qualitative and quantitative way, and show that the convergence of MINRES mainly depends on how quickly the unique negative eigenvalue of the preconditioned shifted coefficient matrix is approximated by its corresponding harmonic Ritz value. By exploring when the negative Ritz value appears in MINRES iteration, we obtain a better understanding of the limitation of preconditioned MINRES in this context and the virtue of a new type of preconditioner with ``tuning''. Comparison of MINRES with SYMMLQ in this context is also given. Finally we show that tuning based on a rank-2 modification can be applied with little additional cost to guarantee positive definiteness of the tuned preconditioner.
    URI
    http://hdl.handle.net/1903/7500
    Collections
    • Technical Reports from UMIACS
    • Technical Reports of the Computer Science Department

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility