Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Low Noise Pre-amplifier/Amplifier Chain for High Capacitance Sensors

    Thumbnail
    View/Open
    umi-umd-4705.pdf (3.050Mb)
    No. of downloads: 5015

    Date
    2007-08-03
    Author
    Adl, Sanaz
    Advisor
    Peckerar, Martin
    Metadata
    Show full item record
    Abstract
    In the past two decades, imaging sensors and detectors have developed tremendously. This technology has found its way into a number of areas, such as space missions, synchrotron light sources, and medical imaging. Nowadays, detectors and custom ICs are routine in high-energy physics applications. Electronic readout circuits have become a key part of every modern detector system. Many sensing circuits in detectors depend upon accumulating charge on a capacitor. The charge uncertainty on the capacitor when it is reset causes a signal error known as reset noise. Therefore, low noise readout circuitry capable of driving high input capacitance is essential for detector systems. A low noise pre-amplifier/amplifier readout circuitry has been designed and fabricated in 0.13um IBM CMOS8RF process technology. The pre-amplifier/ amplifier chain employs correlated double sampling at the input to suppress the kTC noise without any additional circuitry. In order to increase the signal-to-noise ratio, capacitive matching is used at the amplifier input. The experimental results of the signal processing chain employing capacitive matching and correlated double sampling show more than 60 times improvement in the signal-to-noise ratio over the same circuit without these improvements. In this dissertation a novel auto-zeroing technique is introduced as well. This technique uses a nulling point other than the amplifier's input and output to perform the auto-zeroing operation. The auto-zeroing is performed by taking advantage of emitter degeneration in the input transistor pair of the differential pair. For testing purposes this technique is implemented on a telescopic cascode differential amplifier. The auto-zeroed telescopic cascode differential amplifier has also been designed and fabricated in 0.13um IBM CMOS8RF process technology. This auto-zeroing technique reduces the input referred offset noise by an order of magnitude.
    URI
    http://hdl.handle.net/1903/7303
    Collections
    • Electrical & Computer Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility