Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • ログイン
    アイテム表示 
    •   ホーム
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • アイテム表示
    •   ホーム
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • アイテム表示
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Molecularly Imprinted Polymers for the Recognition of Tobacco Viruses

    Thumbnail
    閲覧/開く
    umi-umd-4677.pdf (6.055Mb)
    No. of downloads: 2108

    日付
    2007-07-31
    著者
    Bolisay, Linden De Venecia
    Advisor
    Kofinas, Peter
    Metadata
    アイテムの詳細レコードを表示する
    抄録
    The goal of this research is to elucidate the mechanism of virus recognition in molecularly imprinted polymers (MIPs) using already utilized techniques. The clinical relevance of this study relates to the development of a virus imprinted MIP, which would apply to the identification, classification, and removal of viruses. The separation of viruses and virus-like particles from various media represents an enormous challenge to the fields of medicine, healthcare, and biotechnology. Since virus MIPs must function in aqueous environments, our approach employs a more flexible non-covalent imprinting method which starts from a readily available polymer and utilizes an aqueous environment for both MIP synthesis and testing. Crosslinked polymers imprinted against Tobacco mosaic virus (TMV) via non-covalent interactions were synthesized using poly (allylamine hydrochloride) (PAA), epichlorohydrin (EPI), and TMV. The TMV imprinted polymer exhibited an increase affinity to the target virus compared to the control polymer and demonstrated a preferential affinity (imprinting factor of 2.1), based on shape, to the target virus compared to a non-target virus, Tobacco necrosis virus (TNV). In contrast, there was no significant increase in binding of the control polymer to either target or non-target virus. Once it was determined that virus imprinted polymers can be successfully synthesized having preferential binding to a targeted virus, the synthesis procedure was optimized to obtain better binding characteristics to the targeted virus. Efforts were made to avoid polymer-template aggregation in the MIP pre-polymerization mixture, and determine a proper wash solution by the ability to remove the templated virus from the crosslinked polymer. TMV imprinted hydrogels were synthesized using an optimized procedure and binding test performed on these MIPs to determine binding capacity, and more importantly, imprinting factor. The highest imprinting factor of 2.3 resulted from the MIP composed of 35 % PAA at pH 7, 15 %, ethylene glycol diglycidyl ether (EGDE), and 0.4 mg/mL TMV. The TMV imprinted hydrogels exhibited a lower binding capacity to TNV than when exposed to TMV. These results show that using optimized procedures, TMV MIPs with better shape selectivity can be achieved.
    URI
    http://hdl.handle.net/1903/7277
    Collections
    • Chemical and Biomolecular Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    ブラウズ

    リポジトリ全体コミュニティ/コレクション公開日著者タイトル主題このコレクション公開日著者タイトル主題

    登録利用者

    ログイン登録
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility